Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-t...Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.展开更多
The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was...The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.展开更多
This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t...This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.展开更多
Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrat...Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrated circuits(ASICs)and programmable digital signal processors for many DSP applications have changed,even though new system implementations based on reconfigurable computing are becoming more complex.Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation(DWT)and sophisticated computerized design techniques,which are much needed in today’s modern world.New research and commercial efforts to sustain power optimization,cost savings,and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged.Hence,in this paper,it is proposed that theDWTmethod can be implemented on a fieldprogrammable gate array in a digital architecture(FPGA-DA).We examined the effects of quantization on DWTperformance in classification problems to demonstrate its reliability concerning fixed-point math implementations.The Advanced Encryption Standard(AES)algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks(ANN)method.By reducing hardware area by 57%,the proposed system has a higher throughput rate of 88.72%,reliability analysis of 95.5%compared to the other standard methods.展开更多
Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime,...Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.展开更多
Epilepsy is a common brain disorder that about 1% of world's population suffers from this disorder. EEG signal is summation of brain electrical activities and has a lot of information about brain states and also u...Epilepsy is a common brain disorder that about 1% of world's population suffers from this disorder. EEG signal is summation of brain electrical activities and has a lot of information about brain states and also used in several epilepsy detection methods. In this study, a wavelet-approximate entropy method is ap-plied for epilepsy detection from EEG signal. First wavelet analysis is applied for decomposing the EEG signal to delta, theta, alpha, beta and gamma sub- ands. Then approximate entropy that is a chaotic measure and can be used in estimation complexity of time series applied to EEG and its sub-bands. We used this method for separating 5 group EEG signals (healthy with opened eye, healthy with closed eye, interictal in none focal zone, interictal in focal zone and seizure onset signals). For evaluating separation ability of this method we used t-student statistical analysis. For all pair of groups we have 99.99% separation probability in at least 2 bands of these 6 bands (EEG and its 5 sub-bands). In comparing some groups we have over 99.98% for EEG and all its sub-bands.展开更多
Based on the characteristics of surface acoustic wave(SAW) devices, the theory for realizing wavelet transform (WT) by SAW is deduced. Simulated experiment shows that the method of implementing WT using SAW devices ha...Based on the characteristics of surface acoustic wave(SAW) devices, the theory for realizing wavelet transform (WT) by SAW is deduced. Simulated experiment shows that the method of implementing WT using SAW devices has virtues of high speed and utility and is compatible with digital technique. It is important to implement wavelet transform.展开更多
With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and repr...With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and represents the mental process of imagining a word without making a sound or making clear facial movements.Imagined speech allows patients with physical disabilities to communicate with the outside world and use smart devices through imagination.Imagined speech can meet the needs of more complex manipulative tasks considering its more intuitive features.This study proposes a classification method of imagined speech Electroencephalogram(EEG)signals with discrete wavelet transform(DWT)and support vector machine(SVM).An open dataset that consists of 15 subjects imagining speaking six different words,namely,up,down,left,right,backward,and forward,is used.The objective is to improve the classification accuracy of imagined speech BCI system.The features of EEG signals are first extracted by DWT,and the imagined words are clas-sified by SVM with the above features.Experimental results show that the proposed method achieves an average accuracy of 61.69%,which is better than those of existing methods for classifying imagined speech tasks.展开更多
A new method of resolving overlapped peak, Fourier self-deconvolution (FSD) using approximation CN obtained from frequency domain wavelet transform of F(ω) yielded by Fourier transform of overlapped peak signals ...A new method of resolving overlapped peak, Fourier self-deconvolution (FSD) using approximation CN obtained from frequency domain wavelet transform of F(ω) yielded by Fourier transform of overlapped peak signals f(t) as the linear function, was presented in this paper. Compared with classical FSD, the new method exhibits excellent resolution for different overlapped peak signals such as HPLC signals, and have some characteristics such as an extensive applicability for any overlapped peak shape signals and a simple operation because of no selection procedure of the linear function. Its excellent resolution for those different overlapped peak signals is mainly because F(ω) obtained from Fourier transform of f(t) and CN obtained from wavelet transform of F(ω) have the similar linearity and peak width. The effect of those fake peaks can be eliminated by the algorithm proposed by authors. This method has good potential in the process of different overlapped peak signals.展开更多
An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packe...An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packet theory to adaptive beamforming, a wavelet packet transform-based adaptive beamforming algorithm (WP-ABF) is proposed . This WP-ABF algorithm uses wavelet packet transform as the preprocessing, and the wavelet packet transformed signal uses least mean square algorithm to implement the ~adaptive beamforming. White noise can be wiped off under wavelet packet transform according to the different characteristics of signal and white under the wavelet packet transform. Theoretical analysis and simulations demonstrate that the proposed WP-ABF algorithm converges faster than the conventional adaptive beamforming algorithm and the wavelet transform-based beamforming algorithm. Simulation results also reveal that the convergence of the algorithm relates closely to the wavelet base and series; that is, the algorithm convergence gets better with the increasing of series, and for the same series of wavelet base the convergence gets better with the increasing of regularity.展开更多
Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique techniq...Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD.展开更多
Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significa...Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.展开更多
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2002AA812038)
文摘Decomposition and reconstruction of Mallat fast wavelet transformation (WT) is described. A fast algorithm, which can greatly decrease the processing burden and can be very easy for hardware implementation in real-time, is analyzed. The algorithm will no longer have the processing of decimation and interpolation of usual WT. The formulae of the decomposition and the reconstruction are given. Simulation results of the MEMS (micro-electro mechanical systems) gyroscope drift signal show that the algorithm spends much less processing time to finish the de-noising process than the usual WT. And the de-noising effect is the same. The fast algorithm has been implemented in a TMS320C6713 digital signal processor. The standard variance of the gyroscope static drift signal decreases from 78. 435 5 (°)/h to 36. 763 5 (°)/h. It takes 0. 014 ms to process all input data and can meet the real-time analysis of signal.
文摘The construction of basic wavelet was discussed and many basic analyzing wavelets was compared. Acomplex analyzing wavelet which is continuous, smoothing, orthogonal and exponential decreasing was presented, andit was used to decompose two blasting seismic signals with the continuous wavelet transforms (CWT). The resultshows that wavelet analysis is the better method to help us determine the essential factors which create damage effectsthan Fourier analysis.
文摘This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.
基金This work was supported by King Saud University for funding this work through Researchers Supporting Project number(RSP-2021/387),King Saud University,Riyadh,Saudi Arabia。
文摘Continuous improvements in very-large-scale integration(VLSI)technology and design software have significantly broadened the scope of digital signal processing(DSP)applications.The use of application-specific integrated circuits(ASICs)and programmable digital signal processors for many DSP applications have changed,even though new system implementations based on reconfigurable computing are becoming more complex.Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation(DWT)and sophisticated computerized design techniques,which are much needed in today’s modern world.New research and commercial efforts to sustain power optimization,cost savings,and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged.Hence,in this paper,it is proposed that theDWTmethod can be implemented on a fieldprogrammable gate array in a digital architecture(FPGA-DA).We examined the effects of quantization on DWTperformance in classification problems to demonstrate its reliability concerning fixed-point math implementations.The Advanced Encryption Standard(AES)algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks(ANN)method.By reducing hardware area by 57%,the proposed system has a higher throughput rate of 88.72%,reliability analysis of 95.5%compared to the other standard methods.
基金Science Foundation of Educational Commission of Fujian Province of China (Grant NO:JAO04238)
文摘Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.
文摘Epilepsy is a common brain disorder that about 1% of world's population suffers from this disorder. EEG signal is summation of brain electrical activities and has a lot of information about brain states and also used in several epilepsy detection methods. In this study, a wavelet-approximate entropy method is ap-plied for epilepsy detection from EEG signal. First wavelet analysis is applied for decomposing the EEG signal to delta, theta, alpha, beta and gamma sub- ands. Then approximate entropy that is a chaotic measure and can be used in estimation complexity of time series applied to EEG and its sub-bands. We used this method for separating 5 group EEG signals (healthy with opened eye, healthy with closed eye, interictal in none focal zone, interictal in focal zone and seizure onset signals). For evaluating separation ability of this method we used t-student statistical analysis. For all pair of groups we have 99.99% separation probability in at least 2 bands of these 6 bands (EEG and its 5 sub-bands). In comparing some groups we have over 99.98% for EEG and all its sub-bands.
文摘Based on the characteristics of surface acoustic wave(SAW) devices, the theory for realizing wavelet transform (WT) by SAW is deduced. Simulated experiment shows that the method of implementing WT using SAW devices has virtues of high speed and utility and is compatible with digital technique. It is important to implement wavelet transform.
基金supported in part by the Fundamental Research Funds for the Central Universities(xcxjh20210104).
文摘With the development of human-computer interaction technology,brain-computer interface(BCI)has been widely used in medical,entertainment,military,and other fields.Imagined speech is the latest paradigm of BCI and represents the mental process of imagining a word without making a sound or making clear facial movements.Imagined speech allows patients with physical disabilities to communicate with the outside world and use smart devices through imagination.Imagined speech can meet the needs of more complex manipulative tasks considering its more intuitive features.This study proposes a classification method of imagined speech Electroencephalogram(EEG)signals with discrete wavelet transform(DWT)and support vector machine(SVM).An open dataset that consists of 15 subjects imagining speaking six different words,namely,up,down,left,right,backward,and forward,is used.The objective is to improve the classification accuracy of imagined speech BCI system.The features of EEG signals are first extracted by DWT,and the imagined words are clas-sified by SVM with the above features.Experimental results show that the proposed method achieves an average accuracy of 61.69%,which is better than those of existing methods for classifying imagined speech tasks.
基金the National Natural Science Foundation of China (No. 20275030) the Natural Science Foundation of Shaanxi Province in China (No. 2004B20).
文摘A new method of resolving overlapped peak, Fourier self-deconvolution (FSD) using approximation CN obtained from frequency domain wavelet transform of F(ω) yielded by Fourier transform of overlapped peak signals f(t) as the linear function, was presented in this paper. Compared with classical FSD, the new method exhibits excellent resolution for different overlapped peak signals such as HPLC signals, and have some characteristics such as an extensive applicability for any overlapped peak shape signals and a simple operation because of no selection procedure of the linear function. Its excellent resolution for those different overlapped peak signals is mainly because F(ω) obtained from Fourier transform of f(t) and CN obtained from wavelet transform of F(ω) have the similar linearity and peak width. The effect of those fake peaks can be eliminated by the algorithm proposed by authors. This method has good potential in the process of different overlapped peak signals.
文摘An analysis of the received signal of array antennas shows that the received signal has multi-resolution characteristics, and hence the wavelet packet theory can be used to detect the signal. By emplying wavelet packet theory to adaptive beamforming, a wavelet packet transform-based adaptive beamforming algorithm (WP-ABF) is proposed . This WP-ABF algorithm uses wavelet packet transform as the preprocessing, and the wavelet packet transformed signal uses least mean square algorithm to implement the ~adaptive beamforming. White noise can be wiped off under wavelet packet transform according to the different characteristics of signal and white under the wavelet packet transform. Theoretical analysis and simulations demonstrate that the proposed WP-ABF algorithm converges faster than the conventional adaptive beamforming algorithm and the wavelet transform-based beamforming algorithm. Simulation results also reveal that the convergence of the algorithm relates closely to the wavelet base and series; that is, the algorithm convergence gets better with the increasing of series, and for the same series of wavelet base the convergence gets better with the increasing of regularity.
文摘Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD.
文摘Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.