期刊文献+
共找到1,422篇文章
< 1 2 72 >
每页显示 20 50 100
基于变分模态分解与鲸鱼算法优化回声状态网络的风速预测模型
1
作者 唐非 李昊 《传感技术学报》 CAS CSCD 北大核心 2024年第10期1770-1777,共8页
风速受多种因素影响常伴随着随机性和非平稳性,给风电接入电网造成了相当大的困难,准确的风速预测对风力发电有着极大的研究意义。将变分模态分解算法与鲸鱼算法优化回声状态网络模型相结合,提出了一种风速预测模型。首先通过变分模态... 风速受多种因素影响常伴随着随机性和非平稳性,给风电接入电网造成了相当大的困难,准确的风速预测对风力发电有着极大的研究意义。将变分模态分解算法与鲸鱼算法优化回声状态网络模型相结合,提出了一种风速预测模型。首先通过变分模态分解算法将风速序列分解成多个分量以减少风速内部信号间的耦合性,降低建模难度。然后对这些分量分别建立对应的回声状态网络预测模型。针对回声状态网络模型性能受储备池参数影响较大的问题,采用鲸鱼优化算法对储备池参数进行优化。风速的最终预测值由分解后各分量预测值相加得到。最后,将实际采集的短期风速数据作为研究对象,通过与其他4种预测模型的对比分析表明提出的风速预测模型具有更高的预测精度,能够更好地对风速的变化趋势进行预测。 展开更多
关键词 风速 预测 变分模态分解 回声状态网络 鲸鱼优化算法
下载PDF
遗传算法优化变分模态分解提取舰船辐射噪声特征线谱方法 被引量:2
2
作者 沈鑫玉 陈涛 +2 位作者 郭良浩 刘建军 陈艳丽 《应用声学》 CSCD 北大核心 2024年第1期1-11,共11页
特征线谱提取是舰船目标识别的一个重要研究环节,常采用传统的DEMON谱分析方法,处理过程中,一般对舰船噪声时域信号未予抑噪,低信噪比情况下,传统DEMON谱分析性能差。对此,提出一种采用遗传算法优化变分模态分解方法,用于分解舰船噪声... 特征线谱提取是舰船目标识别的一个重要研究环节,常采用传统的DEMON谱分析方法,处理过程中,一般对舰船噪声时域信号未予抑噪,低信噪比情况下,传统DEMON谱分析性能差。对此,提出一种采用遗传算法优化变分模态分解方法,用于分解舰船噪声原时域信号,获得抑制噪声后的舰船噪声重构信号,进而有效提取了舰船目标噪声幅度调制特征线谱。该方法首先采用遗传算法优化变分模态分解的两个关键输入参数(分解所取模态个数和惩罚因子),对变分模态分解得到的各阶固有模态分量加以判别,去除噪声主导分量,保留信号主导分量,使重构舰船噪声信号显著抑制了干扰噪声,然后对降噪后的重构信号进行频谱分析,获得目标噪声调制特征线谱。理论分析、仿真和实验数据处理结果表明,相比传统DEMON谱分析法,基于遗传算法优化变分模态分解的舰船噪声特征线谱提取方法具有更好的噪声抑制能力,所获取的舰船噪声幅度调制特征线谱信噪比明显高于传统DEMON方法,具有一定优势,前景良好。 展开更多
关键词 舰船辐射噪声 遗传算法 变分模态分解 特征线谱提取
下载PDF
基于变分模态分解和稀疏表示的局部放电信号去噪算法
3
作者 钟俊 刘桢羽 +2 位作者 赵晓坤 唐妮妮 毕潇文 《现代信息科技》 2024年第1期77-83,共7页
鉴于局部放电信号受各种噪声的干扰,文章提出一种基于变分模态分解和稀疏分解的局部放电信号去噪算法。以稀疏表示算法为核心,基于局部放电信号的特性构建其过完备字典,再采用匹配追踪算法在过完备字典中搜索出原信号的最佳匹配原子集... 鉴于局部放电信号受各种噪声的干扰,文章提出一种基于变分模态分解和稀疏分解的局部放电信号去噪算法。以稀疏表示算法为核心,基于局部放电信号的特性构建其过完备字典,再采用匹配追踪算法在过完备字典中搜索出原信号的最佳匹配原子集合重构信号;为解决过完备字典维度过高而导致的搜索次数太多的问题,引进变分模态分解算法和峭度值筛选进行预处理和预重构;优化后的方法可以限制稀疏分解算法的搜索范围和字典参数,以减小计算复杂度。仿真验证以及对工程环境中实测信号的去噪结果表明:该方法具有更好的降噪效果,即使在极低信噪比的情况下,依旧能提取出有效的局部放电信号。 展开更多
关键词 局部放电信号 变分模态分解 峭度 稀疏表示 机器学习 匹配追踪算法 自适应
下载PDF
遗传算法优化变分模态分解在轴承故障特征提取中的应用 被引量:1
4
作者 单玉庭 刘韬 +1 位作者 褚惟 缪护 《噪声与振动控制》 CSCD 北大核心 2024年第1期148-153,204,共7页
针对变分模态分解(Variational Mode Decomposition,VMD)过程中模态分量个数和惩罚参数大小依赖先验知识,单一或顺序优化单一参数可能导致局部最优的问题,提出以包络熵和包络峭度因子作为适应度函数,利用遗传算法全局寻优的特点,对VMD... 针对变分模态分解(Variational Mode Decomposition,VMD)过程中模态分量个数和惩罚参数大小依赖先验知识,单一或顺序优化单一参数可能导致局部最优的问题,提出以包络熵和包络峭度因子作为适应度函数,利用遗传算法全局寻优的特点,对VMD的模态分量个数和惩罚参数组合进行优化。通过最优参数组合下的VMD对信号进行分解,可以获得多个本征模态分量(Intrinsic Mode Function,IMF),选择适应度函数最小IMF分量作为有效IMF分量进行包络解调,从中提取轴承信号的故障特征频率。对多种轴承故障类型信号进行分析并与其他方法对比,结果表明所提方法能有效提取轴承故障特征,有助于实现微弱故障条件下轴承故障特征频率的准确提取。 展开更多
关键词 故障诊断 变分模态分解 包络熵 包络峭度因子 遗传算法 包络解调
下载PDF
基于遗传算法优化变分模态分解方法联合冲击谱的冲击载荷重构方法
5
作者 王伟 肖梦凡 +5 位作者 赵越 刘松 杨康 刘盼盼 杜一帆 帅剑云 《中国海洋平台》 2024年第5期39-44,共6页
在对海上浮式装置受到其他船舶碰撞时碰撞所形成的冲击载荷进行分析和优化时,为了降低过高的分析频率,提出基于遗传算法(Genetic Algorithm,GA)优化的变分模态分解(Variational Modal Decomposition,VMD)方法联合冲击谱(Shock Response ... 在对海上浮式装置受到其他船舶碰撞时碰撞所形成的冲击载荷进行分析和优化时,为了降低过高的分析频率,提出基于遗传算法(Genetic Algorithm,GA)优化的变分模态分解(Variational Modal Decomposition,VMD)方法联合冲击谱(Shock Response Spectrum,SRS)的冲击载荷重构方法。针对具体冲击响应信号,采用GA优化VMD参数对冲击载荷进行分解,通过与原始载荷冲击谱对比,确定截止频率,基于载荷截止频率,对冲击载荷进行重构。结构动力学响应计算验证结果表明,基于GA优化VMD方法联合冲击谱的冲击载荷重构方法可在进行结构动力响应前可靠地对冲击载荷进行重构。 展开更多
关键词 遗传算法 变分模态分解 冲击谱 冲击载荷 截止频率 动力响应
下载PDF
基于变分模态分解和麻雀搜索算法的双向长短期记忆网络的风电短期功率预测方法研究
6
作者 郝露茜 刘琳 +2 位作者 刘白杨 孙杰懿 王慧娟 《湖南电力》 2024年第3期89-95,共7页
针对风电随机波动性导致风电短期功率预测不准的问题,提出一种基于变分模态分解和麻雀搜索算法的双向长短期记忆网络的风电短期功率预测方法。首先采用变分模态分解将历史数据中的风电功率分解成若干个子序列,子序列中每个元素均对应一... 针对风电随机波动性导致风电短期功率预测不准的问题,提出一种基于变分模态分解和麻雀搜索算法的双向长短期记忆网络的风电短期功率预测方法。首先采用变分模态分解将历史数据中的风电功率分解成若干个子序列,子序列中每个元素均对应一个历史时刻的气象数据向量,二者形成原始数据矩阵;然后采用基于麻雀搜索算法的双向长短期记忆网络功率预测方法对若干个原始数据矩阵分别进行建模;最后通过麻雀搜索算法自动寻出双向长短期记忆网络最优参数,并将若干个预测结果叠加形成最终预测结果。用湖南某风电场实际运行数据进行仿真测试,结果表明,所提模型的均方根误差、平均绝对误差和平均绝对百分比误差比双向长短期记忆网络模型分别减少了77.29%、75.52%和75.04%,有效提升了风电场短期功率预测精度。 展开更多
关键词 风电短期功率预测 变分模态分解 麻雀搜索算法 双向长短期记忆网络
下载PDF
基于变分模态分解与量子衍生算法的电力系统惯量评估
7
作者 张强 王超 +3 位作者 李欣蔚 钱小毅 杨宏宇 叶鹏 《电子器件》 CAS 2024年第3期858-864,共7页
为消除电力系统扰动下频率变化率不一致对等效惯量评估的影响,提高系统等效惯量的评估精度,提出一种基于变分模态分解和量子衍生优化算法的电力系统等效惯量水平评估方法。通过变分模态分解实现对频率曲线的特征提取,利用各台发电机的... 为消除电力系统扰动下频率变化率不一致对等效惯量评估的影响,提高系统等效惯量的评估精度,提出一种基于变分模态分解和量子衍生优化算法的电力系统等效惯量水平评估方法。通过变分模态分解实现对频率曲线的特征提取,利用各台发电机的惯性时间常数作为决策变量,对其进行实数量子编码,构造以发电机摇摆方程为基础的优化目标函数,采用量子混合更新策略对时间常数进行优化,进而实现电力系统惯量辨识,最后,进行多重指标的惯量水平评估。通过红沿河核电3号机组跳闸事件对辽宁电网实测数据下电网惯量水平进行评估分析,验证了所提方法的有效性。 展开更多
关键词 电力系统 惯量评估 变分模态分解 量子衍生算法 摇摆方程
下载PDF
改进鲸鱼算法驱动的变分模态分解自适应降噪方法
8
作者 何宇宸 武思琦 +2 位作者 方虎生 殷勤 杨小强 《机电工程技术》 2024年第9期130-134,共5页
为了更好地从振动信号中提取有效信息,提出了一种基于改进的鲸鱼优化算法(VSWOA)与变分模态分解(VMD)的振动信号降噪方法。首先,采用Sobol序列初始化种群,以确保种群的均匀分布和多样性。然后,从多个起始点进行搜索,并在搜索过程中引入... 为了更好地从振动信号中提取有效信息,提出了一种基于改进的鲸鱼优化算法(VSWOA)与变分模态分解(VMD)的振动信号降噪方法。首先,采用Sobol序列初始化种群,以确保种群的均匀分布和多样性。然后,从多个起始点进行搜索,并在搜索过程中引入精英柯西变异策略,以防止算法陷入局部最优解。通过这些改进措施,优化了VMD的参数,使得分解得到的本征模态分量(IMFs)在重构后实现了自适应降噪。实验结果表明,与传统的经验模态分解(EMD)、集合经验模态分解(EEMD)以及鲸鱼优化算法-变分模态分解(WOA-VMD)方法相比,所提方法在降噪后信号失真度更小,同时显著提高了降噪效果和故障特征的保留能力。这表明改进的鲸鱼优化算法能够有效地增强振动信号的降噪性能,为轴承故障诊断提供了更为可靠的方法。 展开更多
关键词 改进鲸鱼优化算法 变分模态分解 自适应降噪 振动信号
下载PDF
基于变分模态分解-门控循环单元-麻雀搜索算法的电能质量稳态指标预测
9
作者 黄华鸿 《电气技术》 2024年第9期9-13,21,共6页
准确的电能质量预测有助于电网的安全可靠运行,本文提出一种基于变分模态分解(VMD)、门控循环单元(GRU)及麻雀搜索算法(SSA)的混合模型,用于预测电能质量稳态指标。首先利用VMD对电能质量历史数据进行分解,然后通过SSA对GRU神经网络的... 准确的电能质量预测有助于电网的安全可靠运行,本文提出一种基于变分模态分解(VMD)、门控循环单元(GRU)及麻雀搜索算法(SSA)的混合模型,用于预测电能质量稳态指标。首先利用VMD对电能质量历史数据进行分解,然后通过SSA对GRU神经网络的参数进行寻优,并将分解出的电能质量数据分量输入GRU神经网络,最后将每个分量的预测值相加,得到电能质量稳态指标预测值。以某监测点的电能质量数据对模型进行验证,并将该模型与GRU、VMD-GRU模型进行对比,结果表明所提预测模型的平均绝对百分比误差低于7%,预测效果更佳。 展开更多
关键词 电能质量 变分模态分解(VMD) 麻雀搜索算法(SSA) 门控循环单元(GRU)
下载PDF
基于改进变分模态分解和优化堆叠降噪自编码器的轴承故障诊断 被引量:1
10
作者 张彬桥 舒勇 江雨 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1408-1421,共14页
针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自... 针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自适应优化分解参数的改进VMD方法,并通过该指标筛选分解后的本征模态函数(IMF)分量;然后,为提取更全面的故障特征,引入新的复合缩放排列熵对各有效IMF的故障特征进行量化;最后,提出一种基于鼠群优化算法(RSO)与麻雀搜索算法(SSA)的混合算法优化SDAE网络超参数,将故障特征输入优化后SDAE网络中得到分类结果。采用美国CWRU轴承数据集进行验证,实验结果表明该方法能全面稳定地提取背景噪声下的故障特征,且与其他方法相比具有更好的抗噪性能和更高的故障诊断准确率。 展开更多
关键词 变分模态分解 综合评价指标 复合缩放排列熵 混合算法 堆叠降噪自编码器
下载PDF
基于CEEMD-IDWT的受载煤岩微震电压去噪算法
11
作者 李鑫 刘志勇 +4 位作者 杨桢 李昊 周婧 卜婧然 王艺儒 《电子测量与仪器学报》 CSCD 北大核心 2024年第8期124-136,共13页
受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进... 受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进dmey小波(IDWT)算法相融合,提出一种新型CEEMD-IDWT联合去噪算法。该算法首先利用CEEMD算法对原始信号进行分解,然后对分解得到的IMF分量应用IDWT算法进行去噪处理,最终将处理过的分量进行重构得到去噪信号。利用仿真分析和单轴压缩实验对该算法的有效性进行验证,结果表明:CEEMD-IDWT联合算法在仿真分析中,相比传统算法信噪比最大提高204.5%,对于其他改进去噪算法信噪比最少提高11.8%,去噪能力具有明显优势;将该算法嵌入自研微震电压采集设备,在复合煤岩单轴压缩实验中得到的微震电压信号噪噪比仅为0.08975,实际去噪效果明显;经CEEMD-IDWT联合算法去噪之后的微震电压具有明显的变化特征,显著提升了信号去噪效果,有效避免了微震电压信号的失真,可以作为受载煤岩变形破裂微震电压信号去噪处理的理想算法,为煤岩动力灾害的准确预判提供了一种可靠且先进的技术参考。 展开更多
关键词 受载煤岩 微震电压 互补集合经验模态分解 改进dmey小波 去噪算法
下载PDF
基于优化变分模态分解的混凝土浅层空洞病害识别
12
作者 赵维刚 石壮 +3 位作者 杨勇 田秀淑 鞠景会 李一凡 《振动与冲击》 EI CSCD 北大核心 2024年第14期91-102,共12页
针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立... 针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立了混凝土浅层空洞病害的理论模型,仿真了不同工况下的病害特征频率及其变化规律;提出了基于IVMD的信号分解方法,设计了基于Tent混沌与柯西变异优化的麻雀搜索算法联合搜索变分模态分解的关键参数k和α,在最佳分解的基础上提出了基于自相关函数图形、相关系数、衰减系数与频域分布情况的浅层空洞病害本征模态函数(intrinsic mode function,IMF)识别方法;选取幅值衰减评估了特征IMF的衰减速度,得出了基于振动衰减特征的空洞病害识别方法;通过预埋病害模型试验对比分析,验证了所提方法的有效性。研究结果表明,基于IVMD的分解方法能够有效降低噪声及其他成分的干扰,提高空洞病害识别精度和准确度。 展开更多
关键词 病害检测 优化麻雀搜索算法 优化变分模态分解(IVMD) 时域衰减速度 声振法
下载PDF
基于双模态分解的发电站母线短期负荷预测
13
作者 刘昕明 吉建光 +1 位作者 李玮 石光磁 《电气工程学报》 CSCD 北大核心 2024年第1期124-132,共9页
母线负荷预测是电力系统运营和规划中至关重要的一项任务,针对电力负荷数据的非线性强以及影响因素多等问题,提出了一种基于双模态分解、深度学习和注意力机制的负荷预测模型。首先,对输入数据进行经验模态分解(Empirical mode decompos... 母线负荷预测是电力系统运营和规划中至关重要的一项任务,针对电力负荷数据的非线性强以及影响因素多等问题,提出了一种基于双模态分解、深度学习和注意力机制的负荷预测模型。首先,对输入数据进行经验模态分解(Empirical mode decomposition,EMD),通过K-means聚类分析对复杂度相似的分量进行集合得到三个组合分量。其次,使用变分模态分解(Variational mode decomposition, VMD)对组合分量再次进行分解得到不同分量,使用麻雀搜索算法(Sparrow search algorithm,SSA)对变分模态分解的参数进行优化。再次,将变分模态分解得到的分量与影响因素连接并输入长短期记忆网络(Long short-term memory network, LSTM),通过注意力机制挖掘数据内部的相关性,并使用SSA对LSTM网络的参数进行优化。最后,采用宁夏某电站一年的负荷数据进行验证,经过与不同模型的对比分析,所提模型有更高的预测精度。 展开更多
关键词 负荷预测 经验模态分解 麻雀搜索算法 变分模态分解 长短期记忆网络 注意力机制
下载PDF
基于变分模态分解和深度多核极限学习机的轴承故障分类
14
作者 邵磊 祝晓晨 +2 位作者 李季 刘宏利 孙文涛 《天津理工大学学报》 2024年第5期32-39,共8页
针对轴承故障分类任务中核极限学习机(kernel extreme learning machine,KELM)超参数选择困难、模型运算速度慢的问题,提出一种基于深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的轴承故障分类方法,利用... 针对轴承故障分类任务中核极限学习机(kernel extreme learning machine,KELM)超参数选择困难、模型运算速度慢的问题,提出一种基于深度混合核极限学习机(deep hybrid kernel extreme learning machine,DHKELM)的轴承故障分类方法,利用天鹰优化算法(aquila optimization algorithm,AO)实现该模型超参数的优化选择。首先,以峰度指数作为鲸鱼优化算法(whale optimization algorithm,WOA)的适应度函数,对变分模态分解(variational mode decomposition,VMD)的相关参数寻优,利用最优参数组合进行VMD分解,得到k个模态分量并求其希尔伯特-黄变换(Hilbert-Huang Transform,HHT)边际谱作为特征数据,将其作为天鹰优化DHKELM分类器的输入,对不同状态的轴承故障进行识别。实验结果表明,KELM,DHKELM,天鹰优化DHKELM三种分类模型故障识别准确率分别为94%,96.67%,98.34%,运算时间分别为0.0631,0.0360,0.0175 s,证明AO-DHKELM识别准确率和运算速度均具有明显优势。 展开更多
关键词 滚动轴承 深度混合核极限学习机 天鹰优化算法 变分模态分解 边际谱
下载PDF
基于EEMD-BRNN组合算法唐山逐月径流量预报研究
15
作者 李海楠 《水利科技与经济》 2024年第1期113-117,共5页
以唐山市1961-2018年逐月地表径流量资料为基础,运用集合经验模式分解(EEMD),将其分解成8个独立模态(IMF);利用贝叶斯正则化神经网络(BRNN)算法,拟合训练期内(1961-2000年)IMF与径流量之间的规律,用以预测预见期(2001-2018年)内的月径... 以唐山市1961-2018年逐月地表径流量资料为基础,运用集合经验模式分解(EEMD),将其分解成8个独立模态(IMF);利用贝叶斯正则化神经网络(BRNN)算法,拟合训练期内(1961-2000年)IMF与径流量之间的规律,用以预测预见期(2001-2018年)内的月径流量变化。结果显示,经EEMD分解得到的IMF序列与径流量之间呈显著相关性;BPNN模型在适当参数下准确模拟了径流量变化特征,其验证集的NSE(Nash-Sutcliffe系数)达20.27%、RMSE(均方根误差)仅为93.23%。EEMD-BRNN组合算法通过对原径流序列进行自适应分解,进而重构非线性平稳序列,显示出在径流预报中的应用前景。 展开更多
关键词 eemd模态分解算法 IMF模态特征 BRNN拟合模型 径流量预测
下载PDF
基于经验模态分解和优化BiLSTM的短期负荷预测
16
作者 骆东松 魏義民 张杰锋 《机械与电子》 2024年第9期11-17,共7页
针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF)... 针对电力负荷数据的非线性和不稳定性问题,提出了一种基于经验模态分解改进麻雀搜索算法双向长短期记忆神经网络相结合的EMD ISSA BiLSTM预测模型。首先采用EMD处理非线性负荷数据,将原始负荷数据分解为多个不同尺度的本征模态函数(IMF),引入反向学习策略和Levy飞行策略分别改进麻雀搜索算法(SSA)的收敛速度慢和容易陷入局部最优问题,利用改进麻雀搜索算法(ISSA)对BiLSTM神经网络进行参数寻优。然后再利用优化后的BiLSTM模型对每个分量进行预测,并将各预测结果叠加组合,得到整个负荷序列的预测结果。最后通过实际算例分析,证明该方法相对于传统的预测方法具有更好的预测精度和稳定性,可作为一种有效的短期负荷预测方法。 展开更多
关键词 电力系统 负荷预测 经验模态分解 麻雀搜索算法 双向长短时记忆神经网络
下载PDF
基于复合基尼指数和最大相关峭度特征模态分解的轴承故障诊断算法 被引量:1
17
作者 杨岗 徐五一 +2 位作者 邓琴 秦礼目 卫昱乾 《机车电传动》 北大核心 2023年第4期9-17,共9页
最大相关峭度特征模态分解可以有效去除冗余信息,实现故障特征增强,但是其效果受分解模态数量、初始化滤波器个数和滤波器长度的影响。针对此问题,文章提出了一种基于复合基尼指数(Compound Gini Index,CGI)与最大相关峭度特征模态分解(... 最大相关峭度特征模态分解可以有效去除冗余信息,实现故障特征增强,但是其效果受分解模态数量、初始化滤波器个数和滤波器长度的影响。针对此问题,文章提出了一种基于复合基尼指数(Compound Gini Index,CGI)与最大相关峭度特征模态分解(Maximum Correlated Kurtosis Feature Mode Decomposition,MCKFMD)的轴承故障诊断方法。首先,将时域平方基尼指数和频域平方基尼指数结合,构建了一种能够同时量化时域和频域周期性脉冲丰富度的新稀疏测度指标,命名为复合基尼指数,并对其性能特性进行评估验证;其次,使用CGI作为沙丘猫群优化算法(Sand Cat Swarm Optimization,SCSO)寻优的适应度函数,快速准确地得到MCKFMD的最优参数组合,实现故障信号的自适应分解;最后,利用CGI选取最优模态,并进行希尔伯特包络解调,实现故障特征提取。通过仿真信号和试验信号验证了所提方法的有效性。对比性研究表明,与参数优化VMD和固定参数MCKFMD相比,文章所提方法在提取周期性故障特征方面更为有效。 展开更多
关键词 最大相关峭度特征模态分解 沙丘猫群优化算法 故障诊断 轴承故障 复合基尼指数 动车组
下载PDF
基于变分模态分解和复合变量选取的短期负荷预测 被引量:3
18
作者 周纲 黄瑞 +3 位作者 刘谋海 李文博 胡军华 高云鹏 《电测与仪表》 北大核心 2024年第2期122-129,共8页
精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,... 精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,提出复合变量选取算法分析筛选影响负荷波动的关键因素,有效去除预测干扰信息并进一步简化预测模型的复杂度,通过兼顾数据短期依赖和长期依赖的长短时记忆神经网络对各子序列进行预测,并将各子序列预测结果进行叠加实现最终的短期负荷预测,据此建立基于变分模态分解和复合变量选取的短期负荷预测方法。选取2019年整年长沙市实际数据验证结果表明,提出算法在复杂外部影响因素下,能准确筛选负荷预测的关键影响因素,相比传统预测模型,提出模型结构更简单、预测精度更高。 展开更多
关键词 短期负荷预测 变分模态分解 复合变量选取算法 长短时记忆神经网络
下载PDF
基于互补集合经验模态分解和改进麻雀搜索算法优化双向门控循环单元的交通流组合预测模型
19
作者 殷礼胜 刘攀 +3 位作者 孙双晨 吴洋洋 施成 何怡刚 《电子与信息学报》 EI CSCD 北大核心 2023年第12期4499-4508,共10页
该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞... 该文针对短时交通流预测过程呈现的非线性、非平稳性及时序相关性特征,为提升预测的精度及收敛速度,提出一种基于互补集合经验模态分解(CEEMD)和改进麻雀搜索算法(ISSA)优化双向门控循环单元(BiGRU)的组合预测模型。首先,考虑到端点飞翼问题,通过改进CEEMD算法将交通流量序列分解为体现路网交通趋势性、周期性及随机性的本征模态函数(IMF)分量,有效提取了其中的先验特征;随后,利用BiGRU网络挖掘交通流量序列中的时序相关性特征,为避免局部最优,并提高麻雀搜索算法(SSA)全局搜索及局部开发能力,采用ISSA对BiGRU网络权值参数迭代择优。实验结果表明,该组合预测模型中各组件对提高预测精度均起到正向作用,同时在不同交通流量数据集下的预测性能较对比算法均更优,展现了精准、快速的预测表现以及良好的泛化能力。 展开更多
关键词 短时交通流预测 互补集合经验模态分解 麻雀搜索算法 双向门控循环单元 边界局部特征延拓
下载PDF
基于变分模态分解和集成学习的光伏发电预测 被引量:1
20
作者 邱书琦 蹇照民 +3 位作者 方立雄 秦婧雯 万俊岭 袁培森 《智慧电力》 北大核心 2024年第3期32-38,共7页
针对光伏发电量数据的非平稳性造成的发电量预测性能问题,提出一种基于改进变分模态分解和集成学习的光伏发电量预测方法。采用改进变分模态分解方法分解光伏发电量数据获得发电量分量,通过集成学习方法构建发电量分量预测模型;将发电... 针对光伏发电量数据的非平稳性造成的发电量预测性能问题,提出一种基于改进变分模态分解和集成学习的光伏发电量预测方法。采用改进变分模态分解方法分解光伏发电量数据获得发电量分量,通过集成学习方法构建发电量分量预测模型;将发电量分量预测值进行组合,获得最终发电量预测结果。实验结果表明,所提方法在公开数据集上对光伏发电量进行预测的均方误差、平均绝对误差、决定系数值分别为0.2232,0.3387,0.9797,与其他方法相比具有更高的预测准确率和更小的误差。 展开更多
关键词 变分模态分解 光伏发电预测 Stacking集成学习 贪心算法
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部