Indian Institute of Technology, Roorkee (IITR) is operating a nationwide network of instruments for recording strong ground motion. Total 300 instruments are installed in seismic zone III, IV and V along Himalayan bel...Indian Institute of Technology, Roorkee (IITR) is operating a nationwide network of instruments for recording strong ground motion. Total 300 instruments are installed in seismic zone III, IV and V along Himalayan belt. Primary goal of this project is to acquire strong ground-motion (SGM) data for various studies in the field of earthquake engineering and seismology in general and in particular to understand propagation and site response characteristics of the sediments that underlie and are thought to produce large site amplification and seismic hazard. These data will complement laboratory data to characterize the properties of the soft soils underlying residential area so that engineers and architects can design appropriate earthquake-resistant structures for the region. The successful working of this network has laid the foundation of Earthquake Early Warning System (EEW) in India. A great number of strong motion records have been obtained and utilized to study local site and geological effects. The paper introduces outline of the IITR strong motion network and some of its recent studies.展开更多
文摘Indian Institute of Technology, Roorkee (IITR) is operating a nationwide network of instruments for recording strong ground motion. Total 300 instruments are installed in seismic zone III, IV and V along Himalayan belt. Primary goal of this project is to acquire strong ground-motion (SGM) data for various studies in the field of earthquake engineering and seismology in general and in particular to understand propagation and site response characteristics of the sediments that underlie and are thought to produce large site amplification and seismic hazard. These data will complement laboratory data to characterize the properties of the soft soils underlying residential area so that engineers and architects can design appropriate earthquake-resistant structures for the region. The successful working of this network has laid the foundation of Earthquake Early Warning System (EEW) in India. A great number of strong motion records have been obtained and utilized to study local site and geological effects. The paper introduces outline of the IITR strong motion network and some of its recent studies.