3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m...3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
We analysed the photooxidation reaction in the electro-(1O2) and nucleophilic (O2•−) reaction of 2-pyridone azo derivatives. First, we calculated the energy (enthalpies) of tautomers formation, which is a measure of d...We analysed the photooxidation reaction in the electro-(1O2) and nucleophilic (O2•−) reaction of 2-pyridone azo derivatives. First, we calculated the energy (enthalpies) of tautomers formation, which is a measure of durability and the probability of their formation. We performed the light fastness calculations of the monoazopyridone dyes. Using the semi-empirical methods of quantum chemistry AM1 and PM3, the reactivity indicators of superdelocalisability (SrE(N)) and the electron density distribution in ground state on the highest occupied HOMO orbital and the lowest unoccupied excited state LUMO in 2-pyridone phenylazo derivatives were calculated. Superdelocalisability coefficients enable the stability to oxidising agents of various chemical molecules depending on the tautomeric forms in which they may occur. The results of the electron density calculations at the HOMO and LUMO boundary orbitals allow to determine the tendency to electrophilic attack with singlet oxygen 1O2 or nucleophilic attack of the superoxide anion O2•−on a specific atom in the molecule. The structure of the dyes was optimised with MM+, MD and AM1 or PM3 until a constant energy value was achieved with a convergence criterion of 0.01 kcal/mol.展开更多
3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be effi...3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be efficient and stable. However, it has low calculation accuracy near the source, which thus gives it low overall accuracy. This paper proposes a joint traveltime calculation method to solve this problem. The method firstly employs the wavefront construction method (WFC), which has a higher calculation accuracy than FMM in calculating traveltime in the small area near the source, and secondly adopts FMM to calculate traveltime for the remaining grid nodes. Due to the increase in calculation precision of grid nodes near the source, this new algorithm is shown to have good calculation precision while maintaining the high calculation efficiency of FMM, which is employed in most of the computational area. Results are verified using various numerical models.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is d...Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.展开更多
Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the imp...Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the impact of different concentrations of Ho^3+ ion on the UC luminescence intensity was discussed. The law of luminescence intensity versus pump power shows that the 474 nm blue emission, 538 nm green emission, and 642 nm red emission are all due to the two-photon process, while the 450 nm blue emission is a three-photon process. The UC mechanism and processes were also analyzed. The sample was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result shows that Ho^3+ ,Tm^3+ , and Yb^3+ co-doped NaYF4 prepared by the hydrothermal method exhibits a hexagonal nanocrystal.展开更多
Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980...Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980 nm laser excitation. The results of XRD showed that the obtained Y2O3:Er^3+,Yb^3+ nanoparticles were of a cubic structure. The average crystallite sizes calculated were in the range of 28-40 nm. Green and red upconversion emission were observed, and attributed to ^2H11/2,^4S3/2→^4I15/2 and ^4F9/2→^4I15/2 transitions of the ion, respectively. The ratio of the intensity of green emission to that of red emission drastically changed with a change in the EDTA 2Na concentration. In the sample synthesized without EDTA, the relative intensity of the green emission was weaker than that of the red emission. The relative intensities of green emission increased with the increased amount of EDTA 2Na used. The possible upconversion luminescence mechanisms were discussed.展开更多
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa...3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.展开更多
基金The authors thank the funds supported by the China National Nuclear Corporation under Grants Nos.WUQNYC2101 and WUHTLM2101-04National Natural Science Foundation of China(42074132,42274154).
文摘3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
文摘We analysed the photooxidation reaction in the electro-(1O2) and nucleophilic (O2•−) reaction of 2-pyridone azo derivatives. First, we calculated the energy (enthalpies) of tautomers formation, which is a measure of durability and the probability of their formation. We performed the light fastness calculations of the monoazopyridone dyes. Using the semi-empirical methods of quantum chemistry AM1 and PM3, the reactivity indicators of superdelocalisability (SrE(N)) and the electron density distribution in ground state on the highest occupied HOMO orbital and the lowest unoccupied excited state LUMO in 2-pyridone phenylazo derivatives were calculated. Superdelocalisability coefficients enable the stability to oxidising agents of various chemical molecules depending on the tautomeric forms in which they may occur. The results of the electron density calculations at the HOMO and LUMO boundary orbitals allow to determine the tendency to electrophilic attack with singlet oxygen 1O2 or nucleophilic attack of the superoxide anion O2•−on a specific atom in the molecule. The structure of the dyes was optimised with MM+, MD and AM1 or PM3 until a constant energy value was achieved with a convergence criterion of 0.01 kcal/mol.
基金supported by NSFC(Nos.41274120,41404085,and 41504084)
文摘3D traveltime calculation is widely used in seismic exploration technologies such as seismic migration and tomography. The fast marching method (FMM) is useful for calculating 3D traveltime and has proven to be efficient and stable. However, it has low calculation accuracy near the source, which thus gives it low overall accuracy. This paper proposes a joint traveltime calculation method to solve this problem. The method firstly employs the wavefront construction method (WFC), which has a higher calculation accuracy than FMM in calculating traveltime in the small area near the source, and secondly adopts FMM to calculate traveltime for the remaining grid nodes. Due to the increase in calculation precision of grid nodes near the source, this new algorithm is shown to have good calculation precision while maintaining the high calculation efficiency of FMM, which is employed in most of the computational area. Results are verified using various numerical models.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
基金supported by the National Scientific and Technological Plan(Nos.2009BAB43B00 and 2009BAB43B01)
文摘Tikhonov regularization(TR) method has played a very important role in the gravity data and magnetic data process. In this paper, the Tikhonov regularization method with respect to the inversion of gravity data is discussed. and the extrapolated TR method(EXTR) is introduced to improve the fitting error. Furthermore, the effect of the parameters in the EXTR method on the fitting error, number of iterations, and inversion results are discussed in details. The computation results using a synthetic model with the same and different densities indicated that. compared with the TR method, the EXTR method not only achieves the a priori fitting error level set by the interpreter but also increases the fitting precision, although it increases the computation time and number of iterations. And the EXTR inversion results are more compact than the TR inversion results, which are more divergent. The range of the inversion data is closer to the default range of the model parameters, and the model features and default model density distribution agree well.
基金Project supported bythe Key Laboratory of Rare Earth Chemistry and Physics ,ChangchunInstitute of Applied Chemistry ,Chinese Academy of Sciences (R020202K)
文摘Nanocrystal of upconversion (UC) phosphor Ho^3+, Tm^3+ , and Yb^3+ co-doped NaYF4 was prepared by the hydrothermal method in the presence of the complexing agent EDTA. Under 980 nm diode laser excitation, the impact of different concentrations of Ho^3+ ion on the UC luminescence intensity was discussed. The law of luminescence intensity versus pump power shows that the 474 nm blue emission, 538 nm green emission, and 642 nm red emission are all due to the two-photon process, while the 450 nm blue emission is a three-photon process. The UC mechanism and processes were also analyzed. The sample was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The result shows that Ho^3+ ,Tm^3+ , and Yb^3+ co-doped NaYF4 prepared by the hydrothermal method exhibits a hexagonal nanocrystal.
基金the Foundation for the University by Educational Department of Liaoning (05L337)Key Laboratory of Rare Earth Chemistry and Physics, Chinese Academy of Sciences
文摘Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980 nm laser excitation. The results of XRD showed that the obtained Y2O3:Er^3+,Yb^3+ nanoparticles were of a cubic structure. The average crystallite sizes calculated were in the range of 28-40 nm. Green and red upconversion emission were observed, and attributed to ^2H11/2,^4S3/2→^4I15/2 and ^4F9/2→^4I15/2 transitions of the ion, respectively. The ratio of the intensity of green emission to that of red emission drastically changed with a change in the EDTA 2Na concentration. In the sample synthesized without EDTA, the relative intensity of the green emission was weaker than that of the red emission. The relative intensities of green emission increased with the increased amount of EDTA 2Na used. The possible upconversion luminescence mechanisms were discussed.
文摘3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.