Dissolved organic matter (DOM) transforma- tion in sequence batch reactor (SBR) fed with carbon sources of different biodegradability was investigated. During the biologic degradation process, the low mole- cular ...Dissolved organic matter (DOM) transforma- tion in sequence batch reactor (SBR) fed with carbon sources of different biodegradability was investigated. During the biologic degradation process, the low mole- cular weight (MW) fraction (〈 1 kDa) gradually decreased, while the refractory compounds with higher aromaticity were aggregated. Size exclusion chromatogra- phy (SEC) and fluorescence of excitation emission matrices (EEM) demonstrated that more biopolymers (polysaccharides or proteins) and humic-like substances were presented in the extracellular polymeric substance (EPS) extracted from the SBR fed with sodium acetate or glucose, while the EPS from SBR fed with slowly biodegradable dissolved organic carbon (DOC) substrate- starch had relatively less biopolymers. Comparing the EfOM in sewage effluent of three SBRs, the effluent from SBR fed with starch is more aromatic. Organic carbon with MW 〉 1 kDa as well as the hydrophobic fraction in DOM gradually increased with the carbon sources changing from sodium acetate to glucose and starch. The DOC fractiona- tion and the EEM all demonstrated that EfOM from the effluent of the SBR fed with starch contained more fulvic acid-like substances comparing with the SBR fed with sodium acetate and glucose.展开更多
The characteristics of effluent organic matter(EfOM) from a wastewater treatment plant(WWTP) during ozonation were investigated using excitation and emission matrix(EEM)spectra, Fourier transform infrared spectroscopy...The characteristics of effluent organic matter(EfOM) from a wastewater treatment plant(WWTP) during ozonation were investigated using excitation and emission matrix(EEM)spectra, Fourier transform infrared spectroscopy(FT-IR) and high-performance size exclusion chromatography(HPSEC) at different ozone dosages. The selectivity of ozonation towards different constituents and functional groups was analysed using two-dimensional correlation spectra(2D-COS) probed by FT-IR, synchronous fluorescence spectra and HPSEC.The results indicated that ozonation can destroy aromatic structures of EfOM and change its molecular weight distribution(MWD). According to 2D-COS analysis, microbial humiclike substances were preferentially removed, and then the protein-like fractions. Terrestrial humic-like components exhibited inactivity towards ozonation compared with the above two fractions. Protein-like substances with small molecular weight were preferentially reacted during ozonation based on 2D-COS probed by HPSEC. In addition, the selectivity of ozone towards different functional groups of EfOM exhibited the following sequence:phenolic and alcoholic C\O groups > aromatic structures containing C_C double bonds >aliphatic C\H. X-ray photoelectron spectroscopy(XPS) further elucidated the preferential reaction of aromatic structures in EfOM during ozonation.展开更多
For effective wastewater reclamation and water recovery,the treatment of natural and effluent organic matters(NOM and EfOM),toxic anions,and micropollutants was considered in this work.Two different NOM(humic acid of ...For effective wastewater reclamation and water recovery,the treatment of natural and effluent organic matters(NOM and EfOM),toxic anions,and micropollutants was considered in this work.Two different NOM(humic acid of the Suwannee River,and NOM of US and Youngsan River,Korea),and one EfOM from the Damyang wastewater treatment plant,Korea,were selected for investigating the removal efficiencies of tight nanofiltration(NF)and ultrafiltration(UF)membranes with different properties.Nitrate,bromate,and perchlorate were selected as target toxic anions due to their well known high toxicities.Tri-(2-chloroethyl)-phosphate(TCEP),oxybenzone,and caffeine,due to their different K_(ow) and pK_(a) values,were selected as target micropollutants.As expected,the NF membranes provided high removal efficiencies in terms of all the tested contaminants,and the UF membrane provided fairly high removal efficiencies for anions(except for nitrate)and the relatively hydrophobic micropollutant,oxybenzon.Through the wetlands,nitrate was successfully removed.Therefore,a fair process of combining membranes with an engineered wetland could be proposed for sustainable wastewater reclamation and optimum control of contaminats.展开更多
文摘Dissolved organic matter (DOM) transforma- tion in sequence batch reactor (SBR) fed with carbon sources of different biodegradability was investigated. During the biologic degradation process, the low mole- cular weight (MW) fraction (〈 1 kDa) gradually decreased, while the refractory compounds with higher aromaticity were aggregated. Size exclusion chromatogra- phy (SEC) and fluorescence of excitation emission matrices (EEM) demonstrated that more biopolymers (polysaccharides or proteins) and humic-like substances were presented in the extracellular polymeric substance (EPS) extracted from the SBR fed with sodium acetate or glucose, while the EPS from SBR fed with slowly biodegradable dissolved organic carbon (DOC) substrate- starch had relatively less biopolymers. Comparing the EfOM in sewage effluent of three SBRs, the effluent from SBR fed with starch is more aromatic. Organic carbon with MW 〉 1 kDa as well as the hydrophobic fraction in DOM gradually increased with the carbon sources changing from sodium acetate to glucose and starch. The DOC fractiona- tion and the EEM all demonstrated that EfOM from the effluent of the SBR fed with starch contained more fulvic acid-like substances comparing with the SBR fed with sodium acetate and glucose.
基金supported by the National Key Technology Support Program (No.2014BAC13B06)the National Natural Science Foundation of China (Nos.51708443,51378414)+2 种基金the National Key Research and Development Program of China (No.2016YFC0400701)the China Postdoctoral Science Foundation (No.2017M623326XB)the Program for Innovative Research Teams in Shaanxi (No.2013KCT-13)
文摘The characteristics of effluent organic matter(EfOM) from a wastewater treatment plant(WWTP) during ozonation were investigated using excitation and emission matrix(EEM)spectra, Fourier transform infrared spectroscopy(FT-IR) and high-performance size exclusion chromatography(HPSEC) at different ozone dosages. The selectivity of ozonation towards different constituents and functional groups was analysed using two-dimensional correlation spectra(2D-COS) probed by FT-IR, synchronous fluorescence spectra and HPSEC.The results indicated that ozonation can destroy aromatic structures of EfOM and change its molecular weight distribution(MWD). According to 2D-COS analysis, microbial humiclike substances were preferentially removed, and then the protein-like fractions. Terrestrial humic-like components exhibited inactivity towards ozonation compared with the above two fractions. Protein-like substances with small molecular weight were preferentially reacted during ozonation based on 2D-COS probed by HPSEC. In addition, the selectivity of ozone towards different functional groups of EfOM exhibited the following sequence:phenolic and alcoholic C\O groups > aromatic structures containing C_C double bonds >aliphatic C\H. X-ray photoelectron spectroscopy(XPS) further elucidated the preferential reaction of aromatic structures in EfOM during ozonation.
基金This research was supported by the National Research Laboratory Program by the Korea Science and Engineering Foundation(Grant No.R0A-2007-000-20055-0)partially supported by the Basic Research Project through a grant provided by the GIST in 2008.
文摘For effective wastewater reclamation and water recovery,the treatment of natural and effluent organic matters(NOM and EfOM),toxic anions,and micropollutants was considered in this work.Two different NOM(humic acid of the Suwannee River,and NOM of US and Youngsan River,Korea),and one EfOM from the Damyang wastewater treatment plant,Korea,were selected for investigating the removal efficiencies of tight nanofiltration(NF)and ultrafiltration(UF)membranes with different properties.Nitrate,bromate,and perchlorate were selected as target toxic anions due to their well known high toxicities.Tri-(2-chloroethyl)-phosphate(TCEP),oxybenzone,and caffeine,due to their different K_(ow) and pK_(a) values,were selected as target micropollutants.As expected,the NF membranes provided high removal efficiencies in terms of all the tested contaminants,and the UF membrane provided fairly high removal efficiencies for anions(except for nitrate)and the relatively hydrophobic micropollutant,oxybenzon.Through the wetlands,nitrate was successfully removed.Therefore,a fair process of combining membranes with an engineered wetland could be proposed for sustainable wastewater reclamation and optimum control of contaminats.