S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
A catalyst is a substance that alters the rate of a reaction. The process of catalysis is essential to the modem day manufacturing industry, mainly in FCC (Fluid Catalytic Cracking) process units. However, long-term...A catalyst is a substance that alters the rate of a reaction. The process of catalysis is essential to the modem day manufacturing industry, mainly in FCC (Fluid Catalytic Cracking) process units. However, long-term exploitation of oil and gas processing catalysts leads to formation of carbon- and sulfur-containing structures of coke and dense products on the catalyst surface. They block reactive catalyst sites and reduce the catalytic activity. The main advantage of radiation processing by EB (electron beam) and gamma rays is chain cracking reaction in crude oil. Otherwise, under exposure to ionize radiation, considerable structure modification of equilibrium silica-alumina catalyst from FCC process may occur, in addition to the removal of impurities. The conditions applied in the irradiation range (20-150 kGy) of gamma rays and EB were not sufficient to alter the structure of the catalyst, whether for removal of the contaminant nickel, a major contaminant of the FCC catalyst, either to rupture of the crystalline structure either for the future reutilization of chemical elements. ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and EDXRFS (Energy Dispersive X-Ray Fluorescence Spectrometry) analysis were used to characterize and evaluate effects of radiation processing on equilibrium catalysts purification. To evaluate and comprehend the reactive catalyst sites, SEM (Scanning Electron Microscopy) and particle size distribution analyses were carried out.展开更多
A novel high performance MgCl2/TiCl4 catalyst with tetrabutyloxsilicane as electron donor was pre-pared for ethylene slurry polymerization process. The properties of the catalyst such as particle size distribution, ca...A novel high performance MgCl2/TiCl4 catalyst with tetrabutyloxsilicane as electron donor was pre-pared for ethylene slurry polymerization process. The properties of the catalyst such as particle size distribution, catalytic activity, hydrogen responsibility and copolymerization performance were investigated and compared with commercial catalyst (imported catalyst). Copolymerization of ethylene and 1-butylene using the catalyst was stud-ied in a pilot plant. The composition, structure and property of the copolymer were characterized by 13C nuclear magnetic resonance (13C NMR) and gel permeation chromatography-Infrared (GPC-IR), and compared with those of the copolymer obtained from a commercial catalyst. In comparison with the commercial catalyst, the novel cata-lyst had a higher activity (up to 34.6 kg·g-1) and a better particle size distribution (PSD), and produced polymers having higher bulk density (up to 0.37 g·cm-3) with less fine resin. Meanwhile, the novel catalyst showed a higher hydrogen responsibility and better copolymerization performance. The results indicated that the copolymer obtained from the novel catalyst has a higher branch in the high molecular weight fraction and lower branch in the low mo-lecular weight fraction.展开更多
Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and i...Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER).展开更多
The development history and major technological innovations of the ultra-low pressure naphtha reforming technology with continuous catalyst regeneration in China were introduced.This technology had been adopted by the...The development history and major technological innovations of the ultra-low pressure naphtha reforming technology with continuous catalyst regeneration in China were introduced.This technology had been adopted by the 1.0 Mt/a CCR unit at the Guangzhou Company.The appropriate catalyst was selected to meet the demand of the unit capacity,the feedstock,and the product slate.The design parameters,including the reaction pressure,the octane number of C5+liquid product,the reaction temperature,the space velocity,the hydrogen/oil molar ratio,and the catalyst circulating rate,were chosen based on the study of process conditions and parameters.The commercial test results showed that the research octane number of C5+product reached 104 when the capacity of the CCR unit was 100%and 115%of the design value.The other technical targets attained or exceeded the expected value.展开更多
The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic re...The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic reaction is constrained by thermodynamic equilibrium and involves a complex reaction network, leading to a heightened focus on catalysts and process design. Copper-based catalysts have been extensively studied and exhibit exceptional low-temperature catalytic performance in cyclohexanol dehydrogenation, with some being commercially used in the industry. This paper specifically concentrates on research advancement concerning active species, reaction mechanisms, factors influencing product selectivity, and the deactivation behaviors of copper-based catalysts. Moreover, a brief introduction to the new processes that break thermodynamic equilibrium via reaction coupling and their corresponding catalysts is summarized here as well. These reviews may off er guidance and potential avenues for further investigations into catalysts and processes for cyclohexanol dehydrogenation.展开更多
CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared s...CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared spectroscopy (IR), thermal gravimetric analysis (TGA), microscopic analysis, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The catalytic performance for CO2 reforming of methane to synthesis gas was investigated in a continuous-flow micro-reactor under atmospheric pressure. TGA, IR, XRD and microscopic analysis show that the catalysts prepared by the direct sol-gel process consist of Ni particles with a nanostructure of around 5 nm and an amorphous-phase composite oxide support. There exists a chemical interaction between metallic Ni particles and supports, which makes metallic Ni well dispersed, highly active and stable. The addition of CeO2 effectively improves the dispersion and the stability of Ni particles of the prepared catalysts, and enhances the adsorption of CO2 on the surface of catalysts. The catalytic tests for methane reforming with CO2 to synthesis gas show that the Ni/Al2O3-ZrO2-CeO2 catalysts show excellent activity and stability compared with the Ni/Al2O3 catalyst. The excellent catalytic activity and stability of the Ni/Al2O3-ZrO2-CeO2 are attributed to the highly, uniformly and stably dispersed small metallic Ni particles, the high reducibility of the Ni oxides and the interaction between metallic Ni particles and the composite oxide supports.展开更多
A new C-2-symmetric diamine/diphosphine Ruthenium (II) complex, RuCl2P2N2H4, was used as an excellent catalyst to carry out the catalytic hydrogen transfer reduction of acetophenone. The conversion of acetophenone to ...A new C-2-symmetric diamine/diphosphine Ruthenium (II) complex, RuCl2P2N2H4, was used as an excellent catalyst to carry out the catalytic hydrogen transfer reduction of acetophenone. The conversion of acetophenone to 2-phenylethanol was up to 99% under the following reaction conditions: substrate:Ru:(CH3)(2)CHOK = 200:1:12; reaction temperature of 65 degrees C; reaction time of 2 h; normal pressure. A hydride transfer mechanism was also discussed.展开更多
A novel molecular probe for identifying properties of supported transition metals and metal oxides catalysts was established.The catalytic mechanism of transition metals was proposed.
The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effe...The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.展开更多
To obtain the semi-solid slurry with uniform and fine structure morphology that satisfies the requirement of rheocasting process, a new process for preparing semi-solid AI alloy slurry was developed, in which local ch...To obtain the semi-solid slurry with uniform and fine structure morphology that satisfies the requirement of rheocasting process, a new process for preparing semi-solid AI alloy slurry was developed, in which local chilling was combined with low superheat pouring and slight electromagnetic stirring (LSPSEMS). The morphology and the size of primary a-AI in the A356 alloy slurry prepared with the new process, i.e., LSPSEMS with local chilling, were investigated using MIAPS image analyzing software, and the grain refinement mechanism was discussed. The results indicate that the semi-solid primary phase consists of particle-like or globular-like a-AI, and the morphology and grain size of primary a-AI in the slurry can be markedly improved by the new process. The fine primary a-AI distributes uniformly in the slurry, which satisfies the requirement of rheocasting. Compared with the alloy prepared by LSPSEMS, the average equal-area-circle grain diameter of primary a-AI in semi-solid A356 alloy ingot prepared by the new process is decreased from 85.6μm to 68.8 μm at the central area, 112.6 μm to 77.6 μm at the transition area and is 84.7 μm in the edge area, respectively. The corresponding shape factor of primary a-AI is increased from 0.78 to 0.83, 0.54 to 0.77 and 0.28 to 0.59, respectively. In addition, the pouring temperature could be suitably raised from 620-630℃ of the traditional process to 650℃ using this technique, which is convenient for practical operation. The mechanism of grain refinement, in the new process, is that the local chilling quickens up the temperature decrease in the center of the melt. The nuclei could not grow up in a short time so the finer grains are formed in the melt.展开更多
Developing an environmental-friendly and highly active catalyst in transesterification for biodiesel production is of great importance for a more economic biodisel process.Herein,we reported that waste eggshells were ...Developing an environmental-friendly and highly active catalyst in transesterification for biodiesel production is of great importance for a more economic biodisel process.Herein,we reported that waste eggshells were used to adsorb Au(Ⅲ) in water and convert the Au(Ⅲ)-polluted eggshells into the functional nanocatalyst-Ca O/Au for the transesterification reaction between soybean oil and methanol to the preparation of biodiesel.By coupling of Ca O and Au nanoparticles,Ca O/Au nanoparticles showed superior catalytic activity for the transesterification reaction between soybean oil and methanol.An optimum performance was observed over Ca O/Au nanocomposites in a methanol-oil molar ratio at 12:1with catalyst content of 1.0 wt% at 70°C for 3 h.Besides,the catalytic activity of Ca O/Au nanocatalyst was almost unchanged after recycling for 5 times and the yield of biodiesel still kept at 88.9%.The proof-of concept study provided us a sustainable method for utilization of waste eggshells to remedy the metal ions-polluted wastewater and the synthesis of functional nanocomposite for biodiesel production,show great potential application of waste eggshell in adsorption and catalytic reactions.展开更多
The coal hydrogenation reaction process is simply considered as three steps.In the first step,the smaller molecules associated with coal structure units are released as some gases and water in the condition of solvent...The coal hydrogenation reaction process is simply considered as three steps.In the first step,the smaller molecules associated with coal structure units are released as some gases and water in the condition of solvent and heating.In this step,some weaker bonds of the coal structure units are ruptured to form free radicals.The radicals are stabi- lized by hydrogen atoms from donor solvent and/or H2.In the second step,chain reaction occurs quickly.In the process of chain reaction,the covalent bonds of coal structure units are attacked by the radicals to form some asphaltenes.In the third step,asphaltenes are hydrogenated form more liquids and some gases.In coal liquefaction,the second step of coal hydrogenation reaction should be controlled to avoid integration of radicals,and the third step of coal hydrogenation should be accelerated to increase the coal conversion and the oil yield.A new concept of coal liquefaction process named as China direct coal lique- faction (CDCL) process is presented based on the mechanism study of coal liquefaction.展开更多
This study focuses on the synthesis of metal-based biochar catalysts and their catalytic activation of peroxymonosulfate(PMS,HSO5−)for the degradation of three different wastewater model pollutants employing advanced ...This study focuses on the synthesis of metal-based biochar catalysts and their catalytic activation of peroxymonosulfate(PMS,HSO5−)for the degradation of three different wastewater model pollutants employing advanced oxidation processes(AOP).Iron,copper,and two different cobalt-based catalysts were prepared and evaluated.The catalysts were supported on a biochar obtained from the pyrolysis of woody pruning wastes.They were characterized by C,H,and N elemental analysis,X-Ray diffraction(XRD),Fourier-transform infrared spectroscopy(FTIR),and scanning electron microscope(SEM).The metal content in each catalyst was determined by means of atomic absorption spectroscopy(AAS).The degradation reac-tions of benzoic acid(BA),catechol(C),and cinnamic acid(CA)were carried out in a lab scale batch glass reactor and were followed by UV-Visible spectroscopy(UV-Vis).A colorimetric technique was employed to verify the presence of oxidant during the reaction progress.The catalyst/oxidant optimal ratio was determined for the cobalt catalysts.The mineralization degree of the pollutants after the degradations was verified by means of total organic carbon(TOC)content in the residual liquids.After 4 h of reaction,the maximum mineralization was reached when C was treated with a cobalt-based catalyst(>80%),and its stability was evaluated through successive cycles of use.展开更多
Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present stud...Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present study,Ag/γ-Al2O3 catalysts were synthesized by the solvothermal process and characterized by XRD,TG?DTA,TEM,UV?Vis and FT?IR.It was found that high-performance Ag/γ-Al2O3 catalysts could be synthesized by properly selecting starting materials,controlling the composition of solvent and other reaction conditions.The microstructure evolution of the catalysts was also discussed.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
文摘A catalyst is a substance that alters the rate of a reaction. The process of catalysis is essential to the modem day manufacturing industry, mainly in FCC (Fluid Catalytic Cracking) process units. However, long-term exploitation of oil and gas processing catalysts leads to formation of carbon- and sulfur-containing structures of coke and dense products on the catalyst surface. They block reactive catalyst sites and reduce the catalytic activity. The main advantage of radiation processing by EB (electron beam) and gamma rays is chain cracking reaction in crude oil. Otherwise, under exposure to ionize radiation, considerable structure modification of equilibrium silica-alumina catalyst from FCC process may occur, in addition to the removal of impurities. The conditions applied in the irradiation range (20-150 kGy) of gamma rays and EB were not sufficient to alter the structure of the catalyst, whether for removal of the contaminant nickel, a major contaminant of the FCC catalyst, either to rupture of the crystalline structure either for the future reutilization of chemical elements. ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and EDXRFS (Energy Dispersive X-Ray Fluorescence Spectrometry) analysis were used to characterize and evaluate effects of radiation processing on equilibrium catalysts purification. To evaluate and comprehend the reactive catalyst sites, SEM (Scanning Electron Microscopy) and particle size distribution analyses were carried out.
文摘A novel high performance MgCl2/TiCl4 catalyst with tetrabutyloxsilicane as electron donor was pre-pared for ethylene slurry polymerization process. The properties of the catalyst such as particle size distribution, catalytic activity, hydrogen responsibility and copolymerization performance were investigated and compared with commercial catalyst (imported catalyst). Copolymerization of ethylene and 1-butylene using the catalyst was stud-ied in a pilot plant. The composition, structure and property of the copolymer were characterized by 13C nuclear magnetic resonance (13C NMR) and gel permeation chromatography-Infrared (GPC-IR), and compared with those of the copolymer obtained from a commercial catalyst. In comparison with the commercial catalyst, the novel cata-lyst had a higher activity (up to 34.6 kg·g-1) and a better particle size distribution (PSD), and produced polymers having higher bulk density (up to 0.37 g·cm-3) with less fine resin. Meanwhile, the novel catalyst showed a higher hydrogen responsibility and better copolymerization performance. The results indicated that the copolymer obtained from the novel catalyst has a higher branch in the high molecular weight fraction and lower branch in the low mo-lecular weight fraction.
基金supported by the research program funded by the TKG Huchemssupported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea(20213030040590)supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(2021R1A5A1028138)。
文摘Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER).
基金Financial support form the SINOPEC Research Program(No.107025)
文摘The development history and major technological innovations of the ultra-low pressure naphtha reforming technology with continuous catalyst regeneration in China were introduced.This technology had been adopted by the 1.0 Mt/a CCR unit at the Guangzhou Company.The appropriate catalyst was selected to meet the demand of the unit capacity,the feedstock,and the product slate.The design parameters,including the reaction pressure,the octane number of C5+liquid product,the reaction temperature,the space velocity,the hydrogen/oil molar ratio,and the catalyst circulating rate,were chosen based on the study of process conditions and parameters.The commercial test results showed that the research octane number of C5+product reached 104 when the capacity of the CCR unit was 100%and 115%of the design value.The other technical targets attained or exceeded the expected value.
基金the support from Clariant International Ltd.the National Natural Science Foundation of China (Nos.22022811,21938008,and U21B2096)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic reaction is constrained by thermodynamic equilibrium and involves a complex reaction network, leading to a heightened focus on catalysts and process design. Copper-based catalysts have been extensively studied and exhibit exceptional low-temperature catalytic performance in cyclohexanol dehydrogenation, with some being commercially used in the industry. This paper specifically concentrates on research advancement concerning active species, reaction mechanisms, factors influencing product selectivity, and the deactivation behaviors of copper-based catalysts. Moreover, a brief introduction to the new processes that break thermodynamic equilibrium via reaction coupling and their corresponding catalysts is summarized here as well. These reviews may off er guidance and potential avenues for further investigations into catalysts and processes for cyclohexanol dehydrogenation.
基金supported by the National Natural Science Foundation of China (NO. 20976013, 21006057)
文摘CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared spectroscopy (IR), thermal gravimetric analysis (TGA), microscopic analysis, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The catalytic performance for CO2 reforming of methane to synthesis gas was investigated in a continuous-flow micro-reactor under atmospheric pressure. TGA, IR, XRD and microscopic analysis show that the catalysts prepared by the direct sol-gel process consist of Ni particles with a nanostructure of around 5 nm and an amorphous-phase composite oxide support. There exists a chemical interaction between metallic Ni particles and supports, which makes metallic Ni well dispersed, highly active and stable. The addition of CeO2 effectively improves the dispersion and the stability of Ni particles of the prepared catalysts, and enhances the adsorption of CO2 on the surface of catalysts. The catalytic tests for methane reforming with CO2 to synthesis gas show that the Ni/Al2O3-ZrO2-CeO2 catalysts show excellent activity and stability compared with the Ni/Al2O3 catalyst. The excellent catalytic activity and stability of the Ni/Al2O3-ZrO2-CeO2 are attributed to the highly, uniformly and stably dispersed small metallic Ni particles, the high reducibility of the Ni oxides and the interaction between metallic Ni particles and the composite oxide supports.
文摘A new C-2-symmetric diamine/diphosphine Ruthenium (II) complex, RuCl2P2N2H4, was used as an excellent catalyst to carry out the catalytic hydrogen transfer reduction of acetophenone. The conversion of acetophenone to 2-phenylethanol was up to 99% under the following reaction conditions: substrate:Ru:(CH3)(2)CHOK = 200:1:12; reaction temperature of 65 degrees C; reaction time of 2 h; normal pressure. A hydride transfer mechanism was also discussed.
文摘A novel molecular probe for identifying properties of supported transition metals and metal oxides catalysts was established.The catalytic mechanism of transition metals was proposed.
文摘The direct conversion of methane using a dielectric barrier discharge has been experimentally studied. Experiments with different values of flow rates and discharge voltages have been performed to investigate the effects on the conversion and reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of methane has been 80% at an input flow rate of 5 ml/min and a discharge voltage of 4 kV. Experimental results also show that the optimum condition has occurred at a high discharge voltage and higher input flow rate. In terms of product distribution, a higher flow rate or shorter residence time can increase the selectivity for higher hydrocarbons. No hydrocarbon product was detected using the thermal method, except hydrogen and carbon. Increasing selectivity for ethane was found when Pt and Ru catalysts presented in the plasma reaction. Hydrogenation of acetylene in the catalyst surface could have been the reason for this phenomenon as the selectivity for acetylene in the products was decreasing.
基金supported by the National Natural Science Foundation of China(Grant Nos.50374012,51144009)the National Natural Science Foundation of Jiangxi Province(Grant No.0650047)+1 种基金the Science and Technology Program of the Education Department of Jiangxi Province(Grant No.GJJ09229)the Science Research Foundation of Jiangxi University of Science and Technology(Grant No.jxxjzd10003)
文摘To obtain the semi-solid slurry with uniform and fine structure morphology that satisfies the requirement of rheocasting process, a new process for preparing semi-solid AI alloy slurry was developed, in which local chilling was combined with low superheat pouring and slight electromagnetic stirring (LSPSEMS). The morphology and the size of primary a-AI in the A356 alloy slurry prepared with the new process, i.e., LSPSEMS with local chilling, were investigated using MIAPS image analyzing software, and the grain refinement mechanism was discussed. The results indicate that the semi-solid primary phase consists of particle-like or globular-like a-AI, and the morphology and grain size of primary a-AI in the slurry can be markedly improved by the new process. The fine primary a-AI distributes uniformly in the slurry, which satisfies the requirement of rheocasting. Compared with the alloy prepared by LSPSEMS, the average equal-area-circle grain diameter of primary a-AI in semi-solid A356 alloy ingot prepared by the new process is decreased from 85.6μm to 68.8 μm at the central area, 112.6 μm to 77.6 μm at the transition area and is 84.7 μm in the edge area, respectively. The corresponding shape factor of primary a-AI is increased from 0.78 to 0.83, 0.54 to 0.77 and 0.28 to 0.59, respectively. In addition, the pouring temperature could be suitably raised from 620-630℃ of the traditional process to 650℃ using this technique, which is convenient for practical operation. The mechanism of grain refinement, in the new process, is that the local chilling quickens up the temperature decrease in the center of the melt. The nuclei could not grow up in a short time so the finer grains are formed in the melt.
基金supported by the Orientative project funded by Fujian Provincial Science and Technology Department(2019H0023)Quanzhou City Science & Technology Program of China(2017G023)+1 种基金Fujian Educational Committee(JAT160402)Natural Science Foundation of Shandong Province,China(No.ZR2019MEM012)。
文摘Developing an environmental-friendly and highly active catalyst in transesterification for biodiesel production is of great importance for a more economic biodisel process.Herein,we reported that waste eggshells were used to adsorb Au(Ⅲ) in water and convert the Au(Ⅲ)-polluted eggshells into the functional nanocatalyst-Ca O/Au for the transesterification reaction between soybean oil and methanol to the preparation of biodiesel.By coupling of Ca O and Au nanoparticles,Ca O/Au nanoparticles showed superior catalytic activity for the transesterification reaction between soybean oil and methanol.An optimum performance was observed over Ca O/Au nanocomposites in a methanol-oil molar ratio at 12:1with catalyst content of 1.0 wt% at 70°C for 3 h.Besides,the catalytic activity of Ca O/Au nanocatalyst was almost unchanged after recycling for 5 times and the yield of biodiesel still kept at 88.9%.The proof-of concept study provided us a sustainable method for utilization of waste eggshells to remedy the metal ions-polluted wastewater and the synthesis of functional nanocomposite for biodiesel production,show great potential application of waste eggshell in adsorption and catalytic reactions.
基金the National Basic Research Program of China(973 Program)(2004CB217605)
文摘The coal hydrogenation reaction process is simply considered as three steps.In the first step,the smaller molecules associated with coal structure units are released as some gases and water in the condition of solvent and heating.In this step,some weaker bonds of the coal structure units are ruptured to form free radicals.The radicals are stabi- lized by hydrogen atoms from donor solvent and/or H2.In the second step,chain reaction occurs quickly.In the process of chain reaction,the covalent bonds of coal structure units are attacked by the radicals to form some asphaltenes.In the third step,asphaltenes are hydrogenated form more liquids and some gases.In coal liquefaction,the second step of coal hydrogenation reaction should be controlled to avoid integration of radicals,and the third step of coal hydrogenation should be accelerated to increase the coal conversion and the oil yield.A new concept of coal liquefaction process named as China direct coal lique- faction (CDCL) process is presented based on the mechanism study of coal liquefaction.
基金funded by SGCyT-UNS M24/Q075,PICTO COVIAR 2017-0112Agregando Valor VT42-UNS11738 research Grants.
文摘This study focuses on the synthesis of metal-based biochar catalysts and their catalytic activation of peroxymonosulfate(PMS,HSO5−)for the degradation of three different wastewater model pollutants employing advanced oxidation processes(AOP).Iron,copper,and two different cobalt-based catalysts were prepared and evaluated.The catalysts were supported on a biochar obtained from the pyrolysis of woody pruning wastes.They were characterized by C,H,and N elemental analysis,X-Ray diffraction(XRD),Fourier-transform infrared spectroscopy(FTIR),and scanning electron microscope(SEM).The metal content in each catalyst was determined by means of atomic absorption spectroscopy(AAS).The degradation reac-tions of benzoic acid(BA),catechol(C),and cinnamic acid(CA)were carried out in a lab scale batch glass reactor and were followed by UV-Visible spectroscopy(UV-Vis).A colorimetric technique was employed to verify the presence of oxidant during the reaction progress.The catalyst/oxidant optimal ratio was determined for the cobalt catalysts.The mineralization degree of the pollutants after the degradations was verified by means of total organic carbon(TOC)content in the residual liquids.After 4 h of reaction,the maximum mineralization was reached when C was treated with a cobalt-based catalyst(>80%),and its stability was evaluated through successive cycles of use.
基金Supported by a Grant-in-Aid for the COE project,Giant Molecules and Complex Systems2004,Ministry of Education,Culture,Sports,Science and Technology of Japan.National Natural Scientific Foundation of China(No.50174050)
文摘Ag/γ-Al2O3 is a kind of promising catalyst with the relatively lower cost compared with those using noble metals,good resistance against catalytic poisoning and excellent behaviour for NOx removal.In the present study,Ag/γ-Al2O3 catalysts were synthesized by the solvothermal process and characterized by XRD,TG?DTA,TEM,UV?Vis and FT?IR.It was found that high-performance Ag/γ-Al2O3 catalysts could be synthesized by properly selecting starting materials,controlling the composition of solvent and other reaction conditions.The microstructure evolution of the catalysts was also discussed.