期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage 被引量:2
1
作者 Guoqiang Zhang Jianan Lu +7 位作者 Jingwei Zheng Shuhao Mei Huaming Li Xiaotao Zhang An Ping Shiqi Gao Yuanjian Fang Jun Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期161-170,共10页
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t... Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage. 展开更多
关键词 intracerebral hemorrhage MACROPHAGE microglia neuroinflammation PHAGOCYTOSIS PI3K/akt/mtor signaling pathway Spi1 TRANSCRIPTOMICS
下载PDF
PI3K/AKT/mTOR signaling pathway inhibitors in proliferation of retinal pigment epithelial cells 被引量:13
2
作者 Na Cai Shun-Dong Dai +3 位作者 Ning-Ning Liu Li-Min Liu Ning Zhao Lei Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2012年第6期675-680,共6页
AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K,... AIM: To determine whether the PI3K/AKT/mTOR pathway is activated in proliferative vitreoretinopathy (PVR) in homo-sapiens. METHODS: The retina of controls and patients with PVR were collected and their levels of PI3K, phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP-1 were determined by Western blot. The cultured human retinal pigment epithelial cell line D407 was treated with a specific mTOR inhibitor, rapamycin (RAPA) or a PI3K inhibitor, LY294002, of various concentrations and durations. Cell morphology was observed by phase contrast microscopy and the proliferation and apoptosis of treated cells were determined by MTT assay and flow cytometry. RESULTS: Levels of PI3K, phospho-AKT, phospho-mTOR, phospho-P70S6K and phospho-4EBP1 was increased in the retina in PVR (P <0.05). In D407 cells, both RAPA and LY294002 significantly inhibited cell proliferation and cell cycle progression, and promoted apoptosis (P <0.05); morphologically, the cells became smaller. Both RAPA and LY294002 reduced levels of phospho-AKT, phospho-mTOR, phospho-p70S6k and phospho-4EBP1 expression (P <0.05). RAPA, but not LY294002, had no significant effect on PI3K expression. CONCLUSION: PI3K/AKT/mTOR signaling pathway is highly activated in the retinal pigment epithelial cells of PVR. The inhibitors of PI3K/AKT/mTOR signaling pathway, RAPA and LY294002, could inhibited the PI3K/AKT/mTOR signaling pathway by reducing the levels of phosphorylation of mTOR pathway components. 展开更多
关键词 human retinal pigment epithelial cell proliferative vitreoretinopathy PI3K/akt/mtor signal pathway
下载PDF
Celastrol Induces Apoptosis and Autophagy via the AKT/mTOR Signaling Pathway in the Pituitary ACTH-secreting Adenoma Cells 被引量:1
3
作者 Zhi CAI Bin QIAN +3 位作者 Jing PANG Zhou-bin TAN Kai ZHAO Ting LEI 《Current Medical Science》 SCIE CAS 2022年第2期387-396,共10页
Objective Pituitary adrenocorticotropic hormone(ACTH)-secreting adenoma is a relatively intractable endocrine adenoma that can cause a range of severe metabolic disorders and pathological changes involving multiple sy... Objective Pituitary adrenocorticotropic hormone(ACTH)-secreting adenoma is a relatively intractable endocrine adenoma that can cause a range of severe metabolic disorders and pathological changes involving multiple systems.Previous studies have shown that celastrol has antitumor effects on a variety of tumor cells via the AKT/mTOR signaling.However,whether celastrol has pronounced antitumor effects on pituitary ACTH-secreting adenoma is unclear.This study aimed to identify a new effective therapeutic drug for pituitary ACTH-secreting adenoma.Methods Mouse pituitary ACTH-secreting adenoma cells(AtT20 cells)were used as an experimental model in vitro and to establish a xenograft tumor model in mice.Cells and animals were administered doses of celastrol at various levels.The effects of celastrol on cell viability,migration,apoptosis and autophagy were then examined.Finally,the potential involvement of AKT/mTOR signaling in celastrol’s mechanism was assessed.Results Celastrol inhibited the proliferation and migration of pituitary adenoma cells in a time-and concentration-dependent manner.It blocked AtT20 cells in the G0/G1 phase,and induced apoptosis and autophagy by downregulating the AKT/mTOR signaling pathway.Similar results were obtained in mice.Conclusion Celastrol exerts potent antitumor effects on ACTH-secreting adenoma by downregulating the AKT/mTOR signaling in vitro and in vivo. 展开更多
关键词 pituitary adenoma CELASTROL AUTOPHAGY APOPTOSIS akt/mtor signaling pathway
下载PDF
Bta-miR-34b controls milk fat biosynthesis via the Akt/mTOR signaling pathway by targeting RAI14 in bovine mammary epithelial cells 被引量:1
4
作者 Yujuan Wang Xiaoyu Wang +3 位作者 Meng Wang Li Zhang Linsen Zan Wucai Yang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2021年第4期1598-1609,共12页
Background:The biosynthesis of milk fat affects both the technological properties and organoleptic quality of milk and dairy products.MicroRNAs(miRNAs)are endogenous small non-coding RNAs that inhibit the expression o... Background:The biosynthesis of milk fat affects both the technological properties and organoleptic quality of milk and dairy products.MicroRNAs(miRNAs)are endogenous small non-coding RNAs that inhibit the expression of their mRNA targets and are involved in downstream signaling pathways that control several biological processes,including milk fat synthesis.miR-34b is a member of the miR-34 miRNA cluster,which is differentially expressed in the mammary gland tissue of dairy cows during lactation and dry periods.Previous studies have indicated miR-34b is a potential candidate gene that plays a decisive role in regulating milk fat synthesis;therefore,it is important to focus on miR-34b and investigate its regulatory effect on the biosynthesis of milk fat in bovine mammary epithelial cells(BMECs).Results:In this study,elevated miR-34b levels reduced milk fat synthesis,upregulated 1,999 genes,and downregulated 2,009 genes in BMECs.Moreover,Kyoto Encyclopedia of Genes and Genomes(KEGG)analysis of differentially expressed genes suggested that miR-34b may play an inhibitory role in milk fat synthesis via the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)signaling pathway by reducing phosphorylation levels.Notably,the mTOR activator MHY1485 rescued the inhibitory effect of miR-34b.Furthermore,we demonstrated that retinoic acid-induced protein 14(RAI14)is a target of miR-34b via TargetScan and immunofluorescence assays.RAI14 mRNA and protein levels were significantly decreased by the miR-34b mimic and increased by the miR-34b inhibitor.Moreover,the reduction in RAI14 levels led to the inhibition of the Akt/mTOR signaling pathway.Conclusions:Overall,our results identified a miR-34b-RAI14-Akt/mTOR regulatory network,while also providing a theoretical basis for the molecular breeding of dairy cows. 展开更多
关键词 akt/mtor signaling pathway Bovine mammary epithelial cells Milk fat MiR-34b RAI14
下载PDF
Effects of Liancao-Xieli capsule on intestinal mucosal inflammatory factors and TLR4/PI3K/Akt/mTOR signaling pathway in mice with ulcerative colitis
5
作者 Jing-Yu Zhan Xing-Xing Yuan +2 位作者 Bing-Yu Wang Chang-Fa Liu Ya-Li Zhang 《Journal of Hainan Medical University》 2021年第24期27-31,共5页
Objective:To observe the effect of Liancao-Xieli capsule on intestinal mucosal inflammatory factors and TLR4/PI3K/Akt/mTOR signaling pathway in mice with ulcerative colitis(UC);Methods:40 male C57BL/6 mice were random... Objective:To observe the effect of Liancao-Xieli capsule on intestinal mucosal inflammatory factors and TLR4/PI3K/Akt/mTOR signaling pathway in mice with ulcerative colitis(UC);Methods:40 male C57BL/6 mice were randomly divided into the control group,model group,Liancao-Xieli group and mesalazine group,with 10 mice in each group.In addition to the control group,the remaining three groups of mice were induced by 3%dextran sulfate sodium(DSS)to induce acute UC model.During the modeling period,mice in each group were given corresponding drugs and normal saline by gavage.At the end of the experiment,HE staining was used to observe the pathological changes of colonic tissue in each group,and ELISA was used to detect the inflammatory factors(TNF-α,IL-6,IL-1β,IL-8,IL-17,and INF-γ)in serum and colonic tissue.The expression levels of TLR4/PI3K/Akt/mTOR signaling pathway related proteins were also detected by Western blot;Results:Compared with the model group,Liancao-Xieli capsule could significantly increase the colon length and decrease the score of colon histopathology in UC mice(P<0.01).In addition,the levels of TNF-α,IL-6,IL1β,IL-8,IL-17,and INF-γwere significantly reduced in serum and colon tissue,and the expressions of TLR4,PI3K,p-Akt and p-mTOR were significantly down-regulated in LiancaoXieyi group when compared with the model group(P<0.01).While the expressions of Akt and mTOR were not significantly affected in Liancao-Xieyi group(P>0.05);Conclusion:LiancaoXieli capsule can reduce the secretion of inflammatory factors,improve the intestinal mucosal damage and inflammatory response in UC by inhibiting the activation of TLR4/PI3K/Akt/mTOR signaling pathway。 展开更多
关键词 Liancao-Xieli capsule Ulcerative colitis Inflammatory factors TLR4/PI3K/akt/mtor signaling pathway
下载PDF
Alleviatory effect of isoquercetin on benign prostatic hyperplasia via IGF-1/PI3K/Akt/mTOR pathway 被引量:1
6
作者 Young-Jin Choi Meiqi Fan +2 位作者 Nishala Erandi Wedamulla Yujiao Tang Eun-Kyung Kim 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1698-1710,共13页
We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effec... We evaluated the effect of isoquercetin(quercetin-O-3-glucoside-quercetin,IQ)as a functional component of Abeliophyllum disistichum Nakai ethanol extract(ADLE)on prostate cell proliferation and apoptosis and its effects on the IGF-1/PI3K/Akt/mTOR pathway in benign prostatic hyperplasia(BPH).Metabolites in ADLE were analyzed using UHPLC-qTOF-MS and HPLC.IQ was orally administered(1 or 10 mg/kg)to a testosterone propionate-induced BPH rat model,and its effects on the prostate weight were evaluated.The effect of IQ on androgen receptor(AR)signaling was analyzed in LNCaP cells.Whether IGF-1 and IQ affect the IGF-1/PI3K/Akt/mTOR pathway in BPH-1 cells was also examined.The metabolites in ADLE were identified and quantified,which confirmed that ADLE contained abundant IQ(20.88 mg/g).IQ significantly reduced the prostate size in a concentration-dependent manner in a BPH rat model,and significantly decreased the expression of AR signaling factors in the rat prostate tissue and LNCaP cells in a concentration-dependent manner.IQ also inhibited the PI3K/AKT/mTOR pathway activated by IGF-1 treatment in BPH-1 cells.In BPH-1 cells,IQ led to G0/G1 arrest and suppressed the expression of proliferation factors while inducing apoptosis.Thus,IQ shows potential for use as a pharmaceutical and nutraceutical for BPH. 展开更多
关键词 ISOQUERCETIN Benign prostatic hyperplasia Androgen receptor signaling PI3K/akt/mtor pathway
下载PDF
Antitumor activity of miR-188-3p in gastric cancer is achieved by targeting CBL expression and inactivating the AKT/mTOR signaling
7
作者 Jian-Jiao Lin Bao-Hua Luo +5 位作者 Tao Su Qiong Yang Qin-Fei Zhang Wei-Yu Dai Yan Liu Li Xiang 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第8期1384-1399,共16页
BACKGROUND Altered miR-188-3p expression has been observed in various human cancers.AIM To investigate the miR-188-3p expression,its roles,and underlying molecular events in gastric cancer.METHODS Fifty gastric cancer... BACKGROUND Altered miR-188-3p expression has been observed in various human cancers.AIM To investigate the miR-188-3p expression,its roles,and underlying molecular events in gastric cancer.METHODS Fifty gastric cancer and paired normal tissues were collected to analyze miR-188-3p and CBL expression.Normal and gastric cancer cells were used to manipulate miR-188-3p and CBL expression through different assays.The relationship between miR-188-3p and CBL was predicted bioinformatically and confirmed using a luciferase gene reporter assay.A Kaplan-Meier analysis was used to associate miR-188-3p or CBL expression with patient survival.A nude mouse tumor cell xenograft assay was used to confirm the in vitro data.RESULTS MiR-188-3p was found to be lower in the plasma of gastric cancer patients,tissues,and cell lines compared to their healthy counterparts.It was associated with overall survival of gastric cancer patients(P<0.001),tumor differentiation(P<0.001),lymph node metastasis(P=0.033),tumor node metastasis stage(I/II vs III/IV,P=0.024),and American Joint Committee on Cancer stage(I/II vs III/IV,P=0.03).Transfection with miR-188-3p mimics reduced tumor cell growth and invasion while inducing apoptosis and autophagy.CBL was identified as a direct target of miR-188-3p,with its expression antagonizing the effects of miR-188-3p on gastric cancer(GC)cell proliferation by inducing tumor cell apoptosis and autophagy through the inactivation of the Akt/mTOR signaling pathway.The in vivo data confirmed antitumor activity via CBL downregulation in gastric cancer.CONCLUSION The current data provides ex vivo,in vitro,and in vivo evidence that miR-188-3p acts as a tumor suppressor gene or possesses antitumor activity in GC. 展开更多
关键词 Gastric cancer miR-188-3p Tumor cell proliferation Autophagy akt/mtor signaling pathway CBL expression
下载PDF
Regulatory Effects of Zuogui Pill on Apoptosis of Follicles in Rats Injured by 60Co-γRays Based on PI3K/Akt/m TOR Signaling Pathway
8
作者 Fenqin ZHAO Mingxia AN +4 位作者 Xiaonan DING Jieying LIU Yan ZHAO Zhihui XIE Shuping LI 《Medicinal Plant》 CAS 2022年第5期45-50,58,共7页
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal... [Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein. 展开更多
关键词 Radiation injury Premature ovarian failure(POF) Zuogui Pill Terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL) Phosphatidylinositol-3-kinases/protein kinase B/mammalian target of rapamycin(PI3K/akt/mtor)signaling pathway B-cell lymphoma-2 Bcl-2-associated X protein
下载PDF
槲皮素调控EGFR/AKT/mTOR信号通路影响人乳腺癌细胞株T47D增殖、凋亡的实验研究 被引量:13
9
作者 王根进 魏正阔 +1 位作者 晏大学 胡涛 《临床和实验医学杂志》 2018年第14期1496-1500,共5页
目的对槲皮素调控表皮生长因子/蛋白激酶B/雷帕霉素靶蛋白(EGFR/AKT/m TOR)信号通路影响人乳腺癌细胞株T47D增殖、凋亡进行分析。方法人乳腺癌细胞株T47D随机分为三组:对照组、雷帕霉素组和槲皮素组。对照组T47D细胞给予溶剂DMSO孵育,... 目的对槲皮素调控表皮生长因子/蛋白激酶B/雷帕霉素靶蛋白(EGFR/AKT/m TOR)信号通路影响人乳腺癌细胞株T47D增殖、凋亡进行分析。方法人乳腺癌细胞株T47D随机分为三组:对照组、雷帕霉素组和槲皮素组。对照组T47D细胞给予溶剂DMSO孵育,雷帕霉素组T47D细胞给予雷帕霉素(10μM)孵育,槲皮素组T47D细胞给予槲皮素(20μM)孵育。分析各组T47D细胞的凋亡蛋白及EGFR/AKT/m TOR信号通路蛋白的表达。结果与对照组相比,槲皮素组和雷帕霉素组细胞增殖受到明显地抑制(P<0.05);槲皮素组和雷帕霉素组T47D细胞的促进凋亡分子Bax、Caspase3和Caspase9蛋白及mRNA水平明显高于对照组而抑制凋亡分子Bcl2蛋白及mRNA水平明显低于对照组(P<0.05);槲皮素组和雷帕霉素组T47D细胞EGFR、AKT及m TOR蛋白及荧光强度均明显低于对照组(P<0.05)。结论槲皮素能够通过抑制EGFR/AKT/m TOR信号通路促进人乳腺癌细胞株T47D的细胞凋亡过程。 展开更多
关键词 乳腺癌 槲皮素 egfr/akt/mtor信号通路 增殖 细胞凋亡
下载PDF
How is the AKT/mTOR pathway involved in cell migration and invasion? 被引量:1
10
作者 JINGYAO XU SHUANGLI HAO +2 位作者 KAIYUE HAN WANXI YANG HONG DENG 《BIOCELL》 SCIE 2023年第4期773-788,共16页
As a pathway that plays a role in nutrient absorption,anabolic response,cell growth and survival,the important role of AKT/mTOR in tumorigenesis has also come to light.For cancer patients,most deaths are caused by the... As a pathway that plays a role in nutrient absorption,anabolic response,cell growth and survival,the important role of AKT/mTOR in tumorigenesis has also come to light.For cancer patients,most deaths are caused by the growth of metastatic tumors outside the primary focus.Therefore,migration and invasion in the late stage of tumor progression are the main unresolved issues in the study of tumor pathogenesis,and AKT/mTOR has been found to participate in the migration and invasion of cancer cells,which means that the study of this pathway may contribute to a solution for the problem.Because of its extensive and complex functions in the organism,this pathway can be regulated by a variety of different signals in the body,and then realize its function through different downstream signal molecules.This article reviews the proteins that can indirectly affect this pathway by regulating the common upstream signaling molecules of this pathway,and the proteins that can directly affect the level of phosphorylation of AKT/mTOR in cancer cells.We also review the proteins that can co-regulate this pathway and its downstream pathways.Through this study,we hope to gain a deeper understanding of the regulatory mechanism of the AKT/mTOR pathway in cancer cells,in hopes of finding effective and harmless cancer treatment targets in the future. 展开更多
关键词 akt/mtor Migration and invasion Cancer cell signal pathway REGULATION
下载PDF
Long noncoding RNA LINC00520 prevents the progression of cutaneous squamous cell carcinoma through the inactivation of the PI3K/Akt signaling pathway by downregulating EGFR 被引量:22
11
作者 Xue-Ling Mei Shah Zhong 《Chinese Medical Journal》 SCIE CAS CSCD 2019年第4期454-465,共12页
Background: Long noncoding RNAs (lncRNAs) play pivotal roles in various malignant tumors. Epidermal growth factor receptor (EGFR) signaling is associated with the pathogenesis of cutaneous squamous cell carcinoma (cSC... Background: Long noncoding RNAs (lncRNAs) play pivotal roles in various malignant tumors. Epidermal growth factor receptor (EGFR) signaling is associated with the pathogenesis of cutaneous squamous cell carcinoma (cSCC). This study aimed to explore the role of LINC00520 in the development of cSCC via EGFR and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways. Methods: A microarray analysis was applied to screen differentially expressed lncRNAs in cSCC samples. The A431 cSCC cell line was transfected and assigned different groups. The expression patterns of LINC00520, EGFR, and intermediates in the PI3K/Akt pathway were characterized using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting analysis. Cell proliferation, migration, and invasion were detected using the MTT assay, scratch test, and Transwell assay, respectively. Cell-based experiments and a tumorigenicity assay were conducted to assess the effect of LINC00520 on cSCC progression. This study was ended in September 2017. Comparisons between two groups were analyzed with t-test and comparisons among multiple groups were analyzed using one-way analysis of variance. The nonparametric Wilcoxon rank sum test was used to analyze skewed data. The enumerated data were analyzed using the chi-square test or Fisher exact test. Results: Data from chip GSE66359 revealed depletion of LINC00520 in cSCC. Cells transfected with LINC00520 vector and LINC00520 vector + si-EGFR showed elevated LINC00520 level but decreased levels of the EGFR, PI3K, AKT, VEGF, MMP-2 and MMP-9 mRNAs and proteins, and inhibition of the growth, migration and adhesion of cSCC cells, while the si-LINC00520 group showed opposite trends (all P < 0.05). Compared with the LINC00520 vector group, the LINC00520 vector + si-EGFR group showed decreased levels of the EGFR, PI3K, AKT, VEGF, MMP-2 and MMP-9 mRNAs and proteins, and inhibition of the growth, migration and adhesion of cSCC cells, while the LINC00520 vector+ EGFR vector group showed opposite results (all P < 0.05). Conclusion: Based on our results, LINC00520-targeted EGFR inhibition might result in the inactivation of the PI3K/Akt pathway, thus inhibiting cSCC development. 展开更多
关键词 LINC00520 egfr PI3K/akt signaling pathway CUTANEOUS SQUAMOUS cell carcinoma LYMPHATIC vessel INVASION INVASION Metastasis
原文传递
Biomimetic hydroxyapatite coating on the 3D-printed bioactive porous composite ceramic scaffolds promoted osteogenic differentiation via PI3K/AKT/mTOR signaling pathways and facilitated bone regeneration in vivo 被引量:1
12
作者 Bizhi Tan Naru Zhao +13 位作者 Wei Guo Fangli Huang Hao Hu Yan Chen Jungang Li Zemin Ling Zhiyuan Zou Rongcheng Hu Chun Liu Tiansheng Zheng Gang Wang Xiao Liu Yingjun Wang Xuenong Zou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期54-64,共11页
The architecture and surface modifications have been regarded as effective methods to enhance the bi-ological response of biomaterials in bone tissue engineering.The porous architecture of the implanta-tion was essent... The architecture and surface modifications have been regarded as effective methods to enhance the bi-ological response of biomaterials in bone tissue engineering.The porous architecture of the implanta-tion was essential conditions for bone regeneration.Meanwhile,the design of biomimetic hydroxyap-atite(HAp)coating on porous scaffolds was demonstrated to strengthen the bioactivity and stimulate osteogenesis.However,bioactive bio-ceramics such asβ-tricalcium phosphate(β-TCP)and calcium sili-cate(CS)with superior apatite-forming ability were reported to present better osteogenic activity than that of HAp.Hence in this study,3D-printed interconnected porous bioactive ceramicsβ-TCP/CS scaf-fold was fabricated and the biomimetic HAp apatite coating were constructed in situ via hydrothermal reaction,and the effects of HAp apatite layer on the fate of mouse bone mesenchymal stem cells(mBM-SCs)and the potential mechanisms were explored.The results indicated that HAp apatite coating en-hanced cell proliferation,alkaline phosphatase(ALP)activity,and osteogenic gene expression.Further-more,PI3K/AKT/mTOR signaling pathway is proved to have an important impact on cellular functions.The present results demonstrated that the key molecules of phosphatidylinositol 3-kinase(PI3K),protein kinase B(AKT)and mammalian target of rapamycin(mTOR)were activated after the biomimetic hydrox-yapatite coating were constructed on the 3D-printed ceramic scaffolds.Besides,the activated influence on the protein expression of Runx2 and BMP2 could be suppressed after the treatment of inhibitor HY-10358.In vivo studies showed that the constructed HAp coating promoted bone formation and strengthen the bone quality.These results suggest that biomimetic HAp coating constructed on the 3D-printed bioac-tive composite scaffolds could strengthen the bioactivity and the obtained biomimetic multi-structured scaffolds might be a potential alternative bone graft for bone regeneration. 展开更多
关键词 Bioactive ceramics Hydroxyapatite coating 3D-printed porous ceramic scaffold PI3K/akt/mtor signaling pathway Bone regeneration
原文传递
Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR 被引量:13
13
作者 Kenneth Maiese 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期372-385,共14页
Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and af... Throughout the globe,diabetes mellitus(DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder.DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy.The mechanistic target of rapamycin(m TOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM.m TOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis,insulin resistance,insulin secretion,stem cell proliferation and differentiation,pancreatic β-cell function,and programmed cell death with apoptosis and autophagy.m TOR is central element for the protein complexes m TOR Complex 1(m TORC1) and m TOR Complex 2(m TORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase(PI 3-K),protein kinase B(Akt),AMP activated protein kinase(AMPK),silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1),Wnt1 inducible signaling pathway protein 1(WISP1),and growth factors.As a result,m TOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease.Future studies directed to elucidate the delicate balance m TOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM. 展开更多
关键词 akt AMP activated protein kinase(AMPK) apoptosis Alzheimer’s disease autophagy β-cell cancer cardiovascular disease caspase CCN family diabetes mellitus epidermal growth factor erythropoietin fibroblast growth factor forkhead transcription factors Fox O FRAP1 hamartin(tuberous sclerosis 1)/tuberin(tuberous sclerosis 2)(TSC1/TSC2) insulin mechanistic target of rapamycin(mtor) m TOR Complex 1(m T ORC1) m TOR Complex 2(m TORC2) nicotinamide nicotinamide adenine dinucleotide(NAD+) non-communicable diseases oxidative stress phosphoinositide 3-kinase(PI 3-K) programmed cell death silent mating type information regulation 2 homolog 1(Saccharomyces cerevisiae)(SIRT1) sirtuin stem cells wingless Wnt Wnt1 inducible signaling pathway protein 1(WISP1)
下载PDF
基于网络药理学和体外实验探讨通关藤口服液抑制胃癌细胞增殖及联用厄洛替尼和阿帕替尼的增敏效应
14
作者 王蒙 李海龙 +5 位作者 宁月 邵利华 高夏青 杨春婷 张志明 陈凤琴 《中国中医基础医学杂志》 CAS CSCD 2024年第7期1178-1190,共13页
目的利用网络药理学方法、分子对接及体外细胞实验探究通关藤(marsdenia tenacissima,MT)口服液抑制胃癌(gastric cancer,GC)增殖的潜在作用机制。方法通过搜索文献、检索TCMSP、Swiss Target Prediction数据库完成MT化学成分、靶点基... 目的利用网络药理学方法、分子对接及体外细胞实验探究通关藤(marsdenia tenacissima,MT)口服液抑制胃癌(gastric cancer,GC)增殖的潜在作用机制。方法通过搜索文献、检索TCMSP、Swiss Target Prediction数据库完成MT化学成分、靶点基因的收集;采用Gene Cards数据库获取疾病相关靶点;利用STRING平台和Cytoscape软件构建交集靶点的蛋白互作网络(protein-protein interaction,PPI);采用Metascape网络平台进行GO和KEGG信号通路分析;运用Auto Dock对部分活性成分与潜在靶点进行分子对接验证;采用四甲基偶氮唑盐(methyl thiazolyl tetrazolium,MTT)法检测MT口服液对GC细胞增殖的抑制作用,分别与厄洛替尼和阿帕替尼联用的协同作用、流式细胞术检测MT口服液诱导GC细胞凋亡及对胃癌细胞周期的影响;采用RT-qPCR法检测MT口服液对GC细胞周期、凋亡相关基因表达的影响;采用Western blot法验证网络药理学和分子对接筛选的靶点。结果共得到MT主要活性成分17个,胃癌关键靶点1880个,主要信号通路167条。体外实验结果表明,40~200 mg/m L的MT口服液可有效抑制GC细胞增殖(P<0.01),与厄洛替尼和与阿帕替尼联用时,具有协同效应。40~160 mg/m L的MT口服液可诱导胃癌细胞凋亡(P<0.01),阻滞细胞周期G0/G1期(P<0.01)。RT-qPCR结果显示,通关藤口服液可以上调B淋巴细胞瘤-2(B-cell lymphoma-2,Bcl-2)相关X蛋白(Bcl-2-associated X protein,BAX)的表达量,下调Bcl-2、细胞周期蛋白依赖性激酶(cyclin dependent kinase,CDK)4、CDK6(P<0.05)的表达量。Western blot结果显示MT口服液,抑制磷酸化-表皮生长因子受体(phosphorylated-epidermal growth factor receptor,p-EGFR)、磷酸化-磷脂酰肌醇-3激酶(phosphorylated-phosphatidylinositol 3-kinase,p-PI3K)、磷酸化AKT丝氨酸/苏氨酸激酶(p-AKT)、磷酸化-雷帕霉素激酶的机制靶点(phosphorylated-mechanistic target of rapamycin kinase,p-mTOR)的表达水平,降低p-EGFR/EGFR、p-PI3K/PI3K、p-AKT/AKT1、p-mTOR/m TOR比值;同时上调BAX、肿瘤蛋白p53(tumor protein p53,P53)、细胞周期蛋白依赖性激酶抑制剂(cyclin dependent kinase inhibitor 1A,CDKN1A/P21),下调Bcl-2、CDK4、CDK6(P<0.05)水平。结论MT口服液可有效抑制胃癌细胞的增殖,阻滞细胞周期并诱导胃癌细胞凋亡,并提高小分子靶向药物厄洛替尼和阿帕替尼治疗胃癌的敏感性。其机制与经调控PI3K/AKT/m TOR信号通路上调BAX、P53、P21,下调Bcl-2、CDK4、CDK6的表达,并抑制EGFR信号通路有关,实验结果验证了网络药理学和分子对接的结果。 展开更多
关键词 网络药理学 通关藤口服液 胃癌 分子对接 egfr/PI3K/akt/mtor信号通路
下载PDF
CD26 upregulates proliferation and invasion in keloid fibroblasts through an IGF-1-induced PI3K/AKT/mTOR pathway 被引量:10
15
作者 Yu Xin Peiru Min +3 位作者 Heng Xu Zheng Zhang Yan Zhang Yixin Zhang 《Burns & Trauma》 SCIE 2020年第1期41-54,共14页
Background:Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion.These pathological behaviours may be related to the heterogeneity of keloid fibroblasts(KFs... Background:Keloid is a fibrotic dermal disease characterized by an abnormal increase in fibroblast proliferation and invasion.These pathological behaviours may be related to the heterogeneity of keloid fibroblasts(KFs);however,because of a lack of effective biomarkers for KFs it is difficult to study the underlying mechanism.Our previous studies revealed that the expansion of CD26+KFs was responsible for increased keloid proliferation and invasion capabilities;the intrinsic relationship and mechanism between CD26 and keloid is therefore worthy of further investigation.The aim of this studywas to explore molecular mechanisms in the process of CD26 upregulated KFs proliferation and invasion abilities,and provide more evidence for CD26 as an effective biomarker of keloid and a new clinical therapeutic target.Methods:Flow cytometry was performed to isolate CD26+/CD26−fibroblasts from KFs and normal fibroblasts.To generate stably silenced KFs for CD26 and insulin-like growth factor-1 receptor(IGF-1R),lentiviral particles encoding shRNA targeting CD26 and IGF-1R were used for transfection.Cell proliferations were analysed by cell counting kit-8 assay and 5-ethynyl-2-deoxyuridine(EdU)incorporation assay.Scratching assay and transwell assay were used to assess cell migration and invasion abilities.To further quantify the regulatory role of CD26 expression in the relevant signalling pathway,RT-qPCR,western blot,ELISA,PI3K activity assay and immunofluorescence were used.Results:Aberrant expression of CD26 in KFs was proven to be associated with increased proliferation and invasion of KFs.Furthermore,the role of the IGF-1/IGF-1 receptor axis was also studied in CD26 and was found to upregulate KF proliferation and invasion.The PI3K/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway was shown to affect CD26-regulated KF proliferation and invasion by increasing phosphorylation levels of S6 kinase and 4E-binding protein.Conclusions:CD26 can be the effective biomarker for KFs,and its expression is closely related to proliferation and invasion in keloids through the IGF-1-induced PI3K/AKT/mTOR pathway.This work provides a novel perspective on the pathological mechanisms affecting KFs and therapeutic strategies against keloids. 展开更多
关键词 CD26 IGF-1 INVASION KELOIDS PI3K/akt/mtor signalling pathway PROLIFERATION FIBROBLAST
原文传递
Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells 被引量:7
16
作者 Valdenizia R.Silva Luciano de S.Santos +2 位作者 Rosane B.Dias Claudio A.Quadros Daniel P.Bezerra 《Cancer Communications》 SCIE 2021年第12期1275-1313,共39页
Colorectal cancer(CRC)represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide.The modern concept of cancer biology indicates that cancer is formed of a small populati... Colorectal cancer(CRC)represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide.The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells(CSCs),which present both pluripotency and self-renewal properties.These cells are considered responsible for the progression of the disease,recurrence and tumor resistance.Interestingly,some cell signaling pathways participate in CRC survival,proliferation,and selfrenewal properties,and most of them are dysregulated in CSCs,including the Wingless(Wnt)/β-catenin,Notch,Hedgehog,nuclear factor kappa B(NF-κB),Janus kinase/signal transducer and activator of transcription(JAK/STAT),peroxisome proliferator-activated receptor(PPAR),phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin(PI3K/Akt/mTOR),and transforming growth factor-β(TGF-β)/Smad pathways.In this review,we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways,which will contribute to the study of potential therapeutic schemes,combining conventional drugs with CSC-targeting drugs,and allowing better cure rates in anti-CRC therapy. 展开更多
关键词 COLORECTAL cancer stem cells cell signaling Wnt/β-catenin pathway NOTCH HEDGEHOG NF-κB JAK/STAT signaling PI3K/akt/mtor signaling targeted therapy
原文传递
PI3K signaling pathway targeting by using different molecular approaches to treat cancer 被引量:7
17
作者 Mohammad Rashid Shahid Karim +4 位作者 Babar Ali Shamshir Khan Makhmur Ahmad Asif Husain Ravinesh Mishra 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2017年第9期621-634,共14页
Recent evidence of research has been proposed that the phosphoinositide 3-kinase(PI3K) pathway is noticeable target for searching novel anticancer agents. The phosphoinositide 3-kinase(PI3K) is accountable for harmoni... Recent evidence of research has been proposed that the phosphoinositide 3-kinase(PI3K) pathway is noticeable target for searching novel anticancer agents. The phosphoinositide 3-kinase(PI3K) is accountable for harmonizing a diverse range of cell functions, such as transcription, proliferation, cell survival, cell growth, degranulation, vesicular trafficking and cell migration, which are mostly involved in carcinogenesis. Particularly, PI3K-mediated signaling molecules and its effects on gene expression contribute to tumorigenesis. PI3Ks generally are grouped into three distinct classes: Ⅰ, Ⅱ and Ⅲ according to their structure and function. The class IA of PI3K includes an alpha, beta or delta p110 catalytic subunit(p110α, p110β, or p110γ), which are associated with the activation of RTKs. Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K, have just been recognized as novel mechanisms of inducing oncogenic PI3K signaling. Therefore, the class IA PI3K is the only one of most evidently implicated in cancer. The PI3K pathway is mostly mutated in more cancer patients compared with normal person, making it an eyecatching molecular target for analyses based on inhibitor molecule. In this article, we highlighted the signaling effects and regulation pathway of PI3K involved in the development and survival of tumor cells. The consequence and intricacy of PI3K pathway made it an essential beneficial target for cancer treatment. 展开更多
关键词 PI3K akt mtor PDK-1 Tumor Suppressor PTEN signal pathway
原文传递
基于磷脂酰肌醇3激酶/蛋白激酶B/雷帕霉素靶蛋白信号通路小干扰RNA沉默微小RNA-373对喉癌细胞的影响 被引量:2
18
作者 彭丽娜 武川军 +2 位作者 要兆旭 赵倩 韩海平 《中国耳鼻咽喉头颈外科》 CSCD 2022年第3期185-187,共3页
目的 探讨磷脂酰肌醇3激酶(Phosphatidylinositol 3 kinase,PI3K)/蛋白激酶B(Protein kinase B,Akt)/雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路小干扰RNA(Small interfering RNA,siRNA)沉默微小RNA-373(Microrna-373... 目的 探讨磷脂酰肌醇3激酶(Phosphatidylinositol 3 kinase,PI3K)/蛋白激酶B(Protein kinase B,Akt)/雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路小干扰RNA(Small interfering RNA,siRNA)沉默微小RNA-373(Microrna-373,miR-373)对喉癌细胞生物学行为的影响。方法 喉癌TU212细胞株经常规培养后分为空白组、空白转染组、过表达组和沉默组,四组细胞分别培养。检测各组细胞增殖、凋亡、迁移、侵袭能力及PI3K/AKT/mTOR通路蛋白表达。结果 与过表达组相比,沉默组miR-373、P13K、AKT、mTOR表达量较低(P<0.05);沉默组24、48、72 h细胞增殖率较低,72 h细胞凋亡率较高(P<0.05);沉默组细胞迁移率较少、侵袭数较少(P<0.05)。结论 沉默miR-373可能通过作用于PI3K/AKT/mTOR信号通路,下调P13K、AKT、mTOR表达,抑制喉癌细胞增殖、迁移、侵袭,促进凋亡。 展开更多
关键词 喉肿瘤(Laryngeal Neoplasms) 细胞增殖(Cell Proliferation) 细胞凋亡(Apoptosis) 微小RNA-373(microRNA-373) PI3K/akt/mtor信号通路(PI3K/akt/mtor signaling pathway)
下载PDF
Effect of bortezomib on migration and invasion in cervical carcinoma HeLa cell 被引量:2
19
作者 Chong Shi Guo-Bin Zhang Shu-Wang Yin 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2015年第6期484-487,共4页
Objective:To explore the effect of bortezomib on migration and invasion of cervical carcinoma HeLa cell and specific molecular mechanism.Methods:The effect of bortezomib on the viability of HeLa cell was measured by M... Objective:To explore the effect of bortezomib on migration and invasion of cervical carcinoma HeLa cell and specific molecular mechanism.Methods:The effect of bortezomib on the viability of HeLa cell was measured by MTT assay.The effect of bortezomib on cell migration and invasion was measured by Transwell assay and invasion experiment respectively.The activation of Akt/mTOR signaling pathway and expression level of MMP2,MMP9 were assayed by western blot.Results:MTT assay indicated bortezomib(2.5 μM.5 μM,10 μM)could inhibit HeLa cell viability,and the inhibitory rate was highest at 48 h.Transwell assay and invasion experiment results showed that bortezomib inhibited HeLa cell migration and invasion.Western blotting assays presented bortezomib could suppress the phosphorylation of Akt and mTOR.and down-regulate the expression of MMP2 and MMP9.Conclusions:These results suggested bortezomib could inhibit migration and invasion in cervical carcinoma HeLa cell,which might be related to Akt/mTOR signal pathway. 展开更多
关键词 BORTEZOMIB CERVICAL carcinoma HELA cell Migration INVASION akt/mtor signal pathway
下载PDF
WJH 6^(th) Anniversary Special Issues(2): Hepatocellular carcinoma Mammalian target of rapamycin inhibition in hepatocellular carcinoma 被引量:3
20
作者 René E Ashworth Jennifer Wu 《World Journal of Hepatology》 CAS 2014年第11期776-782,共7页
Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is ... Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is the only available systemic agent for treatment of HCC that improves overall survival for patients with advanced stage disease; unfortunately, an effective second-line agent for the treatment of progressive or sorafenib-resistant HCC has yet to be identified. This review focuses on components of the mammalian target of rapamycin(mTOR) pathway, its role in HCC pathogenesis, and dual mTOR inhibition as a therapeutic option with potential efficacy in advanced HCC. There are several important upstream and downstream signals in the mTOR pathway, and alternative tumor-promoting pathways are known to exist beyond mTORC1 inhibition in HCC. This review analyzes the relationships of the upstream and downstream regulators of mTORC1 and mTORC2 signaling; it also provides a comprehensive global picture of the interaction between mTORC1 and mTORC2 which demonstrates the pre-clinical relevance of the mTOR pathway in HCC pathogenesis and progression. Finally, it provides scientific rationale for dual mTORC1 and mTORC2 inhibition in the treatment of HCC. Clinical trials utilizing mTORC1 inhibitors and dual mTOR inhibitors in HCC are discussed as well. The mTOR pathway is comprised of two main components, mTORC1 and mTORC2; each has a unique role in the pathogenesis and progression of HCC. In phase Ⅲ studies, mTORC1 inhibitors demonstrate anti-tumor ac-tivity in advanced HCC, but dual mTOR(mTORC1 and mTORC2) inhibition has greater therapeutic potential in HCC treatment which warrants further clinical investigation. 展开更多
关键词 MAMMALIAN TARGET of RAPAMYCIN hepato-cellular carcinoma MAMMALIAN TARGET of RAPAMYCIN COMPLEX 1 MAMMALIAN TARGET of RAPAMYCIN COMPLEX 2 PI3K/akt/mtor signaling pathway Sorafenib Everoli-mus Sirolimus Liver transplantation CC-223
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部