Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually...Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually ignored in the research process.In this paper,according to the meshing characteristics of double involute gears,based on the non-Newtonian thermal EHL theory,a new calculation method of normal and tangential oil film stiffness for double involute gears is established by the idea of subsection method.The oil film stiffness difference between double involute gears and common involute gears is analyzed,and the influence of tooth waist order parameters,working conditions,and thermal effect on the oil film stiffness are studied.The results reveal that there are some differences between normal and tangential oil film stiffness between double involute gears and common involute gears,but there is little difference.Compared with the torque,rotation speed and initial viscosity of the lubricating oil,the tooth waist order parameters have less influence on the oil film stiffness.Thermal effect has a certain influence on normal and tangential oil film stiffness,which indicates that the influence of thermal effect on the oil film can not be ignored.This research proposes a calculation method of normal and tangential oil film stiffness suitable for double involute gears,which provides a theoretical basis for improving the stability of the transmission.展开更多
To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadra...To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadratic polynomial with intercrossing term and then mapped into the Hertz contact zone. Considering the randomness of the EHL, material properties and fatigue strength correction factors, the probabilistic reliability analysis model is established using artificial neural network(ANN). Genetic algorithm(GA) is employed to search the minimum reliability index and the design point by introducing an adjusting factor in penalty function. Reliability sensitivity analysis is completed based on the advanced first order second moment(AFOSM). Numerical example shows that the established probabilistic reliability analysis model could correctly reflect the effect of EHL on contact fatigue of spur gear, and the proposed intelligent method has an excellent global search capability as well as a highly efficient computing performance compared with the traditional Monte Carlo method(MCM).展开更多
1 Putting forword the question and its calculating method The lubrication of involute spur gear transmission is the typical one of transient EHL line contact problem. It can't be described only with famous Dowson-...1 Putting forword the question and its calculating method The lubrication of involute spur gear transmission is the typical one of transient EHL line contact problem. It can't be described only with famous Dowson-Higginson equation, but it is a very complicated partial difference equation. So far, no any complete discussion has been seen at home and abroad, and it is a forward problem at this field in internation. So there is a number of deepgoing and much-needed work to do. It is correspondence with practical lubrication condition to explore the展开更多
Through optimizing the eletric parameters of the resistance-capacitance (R-C)oscillation,a measuring instrument is developed for measurement of EHL oil filmthickness.Actual measurement was made with space bearings and...Through optimizing the eletric parameters of the resistance-capacitance (R-C)oscillation,a measuring instrument is developed for measurement of EHL oil filmthickness.Actual measurement was made with space bearings and actual measurements arein good agreement with theoretical calculations.展开更多
The complete numerical solution of line contact thermal elastohydro dynamic lubrication, the complete three dimensional temperature field and the dis tribution of traction drag force in the contact zone under differen...The complete numerical solution of line contact thermal elastohydro dynamic lubrication, the complete three dimensional temperature field and the dis tribution of traction drag force in the contact zone under different entrainment veloci ties are obtained by solving the simultaneous EHL lubrication equations. The results show that the thermal effect has certain influence on pressure distribution and film thickness. In addition, .the film temperature and the solid surface temperature in the contact zone are greatly affected by the entrainment velocity.展开更多
This paper aims to evaluate the action of viscosity wedge in the oil film formation ofEHL at opposite sliding and zero entrainment. Using solvers developed for Newtonian and Eyringfluids, the film formation behavior o...This paper aims to evaluate the action of viscosity wedge in the oil film formation ofEHL at opposite sliding and zero entrainment. Using solvers developed for Newtonian and Eyringfluids, the film formation behavior originating from viscosity wedge is investigated. The numericalsimulation displays that lubricant film formation induced by viscosity wedge is different from that bythe well-known geometrical wedge with entrainment in classic EHL. The numerical analyses showthat at high opposite sliding speed the viscosity wedge acts as a leading role in film formation, thenon-Newtonian effects can have a pronounced influence on action of the viscosity wedge.展开更多
Friction force is a crucial factor causing power loss and fatigue spalling of rolling element bearings.A combined experimental and analytical method is proposed to quantitatively determine the elastohydrodynamic lubri...Friction force is a crucial factor causing power loss and fatigue spalling of rolling element bearings.A combined experimental and analytical method is proposed to quantitatively determine the elastohydrodynamic lubrication(EHL)friction force distribution between rollers and outer raceway in a cylindrical roller bearing(CRB).An experimental system with the instrumented bearing and housing was developed for measuring radial load distribution and friction torque of bearings.A simplified model of friction force expressed by dimensionless speed,load,and material parameters was given.An inequality constrained optimization problem was established and solved by using an experimental data-driven learning algorithm for determining the uncertain parameters in the model.The effect of speed,load,and lubricant property on friction force and friction coefficient was discussed.展开更多
Elastohydrodynamic lubrication(EHL)is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity.Modelling of contact...Elastohydrodynamic lubrication(EHL)is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity.Modelling of contact interfaces under EHL is challenging due to high nonlinearity,complexity,and the multi-disciplinary nature.This paper aims to understand the state of the art of computational modelling of EHL by(1)examining the literature on modeling of contact surfaces under boundary and mixed lubricated conditions,(2)emphasizing the methods on the friction prediction occurring to contact surfaces,and(3)exploring the feasibility of using commercially available software tools(especially,Simulia/Abaqus)to predict the friction and wear at contact surfaces of objects with relative reciprocating motions.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52075279)。
文摘Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually ignored in the research process.In this paper,according to the meshing characteristics of double involute gears,based on the non-Newtonian thermal EHL theory,a new calculation method of normal and tangential oil film stiffness for double involute gears is established by the idea of subsection method.The oil film stiffness difference between double involute gears and common involute gears is analyzed,and the influence of tooth waist order parameters,working conditions,and thermal effect on the oil film stiffness are studied.The results reveal that there are some differences between normal and tangential oil film stiffness between double involute gears and common involute gears,but there is little difference.Compared with the torque,rotation speed and initial viscosity of the lubricating oil,the tooth waist order parameters have less influence on the oil film stiffness.Thermal effect has a certain influence on normal and tangential oil film stiffness,which indicates that the influence of thermal effect on the oil film can not be ignored.This research proposes a calculation method of normal and tangential oil film stiffness suitable for double involute gears,which provides a theoretical basis for improving the stability of the transmission.
基金Project(CX2014B060) supported by Hunan Provincial Innovation for Postgraduate,ChinaProject(8130208) supported by General Armament Pre-research Foundation
文摘To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadratic polynomial with intercrossing term and then mapped into the Hertz contact zone. Considering the randomness of the EHL, material properties and fatigue strength correction factors, the probabilistic reliability analysis model is established using artificial neural network(ANN). Genetic algorithm(GA) is employed to search the minimum reliability index and the design point by introducing an adjusting factor in penalty function. Reliability sensitivity analysis is completed based on the advanced first order second moment(AFOSM). Numerical example shows that the established probabilistic reliability analysis model could correctly reflect the effect of EHL on contact fatigue of spur gear, and the proposed intelligent method has an excellent global search capability as well as a highly efficient computing performance compared with the traditional Monte Carlo method(MCM).
文摘1 Putting forword the question and its calculating method The lubrication of involute spur gear transmission is the typical one of transient EHL line contact problem. It can't be described only with famous Dowson-Higginson equation, but it is a very complicated partial difference equation. So far, no any complete discussion has been seen at home and abroad, and it is a forward problem at this field in internation. So there is a number of deepgoing and much-needed work to do. It is correspondence with practical lubrication condition to explore the
基金The Project is supported by the doctoral foundation of the National Education Committee of China
文摘Through optimizing the eletric parameters of the resistance-capacitance (R-C)oscillation,a measuring instrument is developed for measurement of EHL oil filmthickness.Actual measurement was made with space bearings and actual measurements arein good agreement with theoretical calculations.
文摘The complete numerical solution of line contact thermal elastohydro dynamic lubrication, the complete three dimensional temperature field and the dis tribution of traction drag force in the contact zone under different entrainment veloci ties are obtained by solving the simultaneous EHL lubrication equations. The results show that the thermal effect has certain influence on pressure distribution and film thickness. In addition, .the film temperature and the solid surface temperature in the contact zone are greatly affected by the entrainment velocity.
文摘This paper aims to evaluate the action of viscosity wedge in the oil film formation ofEHL at opposite sliding and zero entrainment. Using solvers developed for Newtonian and Eyringfluids, the film formation behavior originating from viscosity wedge is investigated. The numericalsimulation displays that lubricant film formation induced by viscosity wedge is different from that bythe well-known geometrical wedge with entrainment in classic EHL. The numerical analyses showthat at high opposite sliding speed the viscosity wedge acts as a leading role in film formation, thenon-Newtonian effects can have a pronounced influence on action of the viscosity wedge.
基金This research is supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1834202).
文摘Friction force is a crucial factor causing power loss and fatigue spalling of rolling element bearings.A combined experimental and analytical method is proposed to quantitatively determine the elastohydrodynamic lubrication(EHL)friction force distribution between rollers and outer raceway in a cylindrical roller bearing(CRB).An experimental system with the instrumented bearing and housing was developed for measuring radial load distribution and friction torque of bearings.A simplified model of friction force expressed by dimensionless speed,load,and material parameters was given.An inequality constrained optimization problem was established and solved by using an experimental data-driven learning algorithm for determining the uncertain parameters in the model.The effect of speed,load,and lubricant property on friction force and friction coefficient was discussed.
基金The first author Zhuming Bi would like to acknowledge the sponsorship of Senior Summer Faculty Grant from Purdue University Fort Wayne (PFW) and the Faculty Collaborative Research Grant from Purdue University Fort Wayne (PFW).
文摘Elastohydrodynamic lubrication(EHL)is a type of fluid-film lubrication where hydrodynamic behaviors at contact surfaces are affected by both elastic deformation of surfaces and lubricant viscosity.Modelling of contact interfaces under EHL is challenging due to high nonlinearity,complexity,and the multi-disciplinary nature.This paper aims to understand the state of the art of computational modelling of EHL by(1)examining the literature on modeling of contact surfaces under boundary and mixed lubricated conditions,(2)emphasizing the methods on the friction prediction occurring to contact surfaces,and(3)exploring the feasibility of using commercially available software tools(especially,Simulia/Abaqus)to predict the friction and wear at contact surfaces of objects with relative reciprocating motions.