In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibu...In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.展开更多
An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller,which is rolling over a flat plane,is given The analysis takes account of sideways fl...An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller,which is rolling over a flat plane,is given The analysis takes account of sideways flow of lubricant in the inlet region of the contact When the results are presented in suitable non dimensional groups,it is shown that more uniformly pressure and shape of the film distributing in axial direction is taken place under light loading As the increase of the load,the end closure is displayed and the oil pressure rises sharply at the ends The seal action formed by the end closure makes the film thickness a little And the minimum film thickness is transferred from the central to the ends and the value is reduced rapidly As the increase of the speed,the end closure becomes much serious The optimum crowning value obtained in EHL state is larger than the design value obtained in elastostatic contact state for the same working conditions In order to verify the correctness of theory,optical interferometry is applied to measure the oil film thickness between a logarithmic profiled roller and a glass plate under pure rolling conditions It is found the agreement between numerical solutions and experiments is very good.展开更多
Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short...Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short) is investigated. The results suggest that gearlubrication effects bear close relations to a dimensionless parameter D which is syntheticallydetermined by gearing rotational speed, load, material, dimension and lubricant viscosity. When D<=8, the gear fatigue life increases as the lubricant viscosity is increased; When D>8, however, thelife decreases with the viscosity addition, which is in marked contrast to the lubrication factorZ_L recommended by the International Standard for Computing Cylindrical Gear Strength. At the end, aset of formulae for calculating gear lubrication factors suitable for different working conditionsare advanced.展开更多
Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually...Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually ignored in the research process.In this paper,according to the meshing characteristics of double involute gears,based on the non-Newtonian thermal EHL theory,a new calculation method of normal and tangential oil film stiffness for double involute gears is established by the idea of subsection method.The oil film stiffness difference between double involute gears and common involute gears is analyzed,and the influence of tooth waist order parameters,working conditions,and thermal effect on the oil film stiffness are studied.The results reveal that there are some differences between normal and tangential oil film stiffness between double involute gears and common involute gears,but there is little difference.Compared with the torque,rotation speed and initial viscosity of the lubricating oil,the tooth waist order parameters have less influence on the oil film stiffness.Thermal effect has a certain influence on normal and tangential oil film stiffness,which indicates that the influence of thermal effect on the oil film can not be ignored.This research proposes a calculation method of normal and tangential oil film stiffness suitable for double involute gears,which provides a theoretical basis for improving the stability of the transmission.展开更多
基金The National Defense Advance Research Program(No.81302XXX)
文摘In order to more accurately predict the contact fatigue life of rolling bearing, a prediction method of fatigue life of rolling bearing is proposed based on elastohydrodynamic lubrication (EHL), the 3-paameter Weibull distribution ad fatigue strength. First,the contact stress considering elliptical EHL is obtained by mapping film pressure onto the Hertz zone. Then,the basic strength model of rolling bearing based on the 3-parameter Weibull distribution is deduced by the series connection reliability theory. Considering the effect of the type of stress, variation of shape and fuctuation of load, the mathematical models of the 尸 -tS-TV curve of the minimum life and the characteristic life for rolling bearing are established, respectively, and thus the prediction model of fatigue life of rolling bearing based on the 3-paameter Weibull distribution and fatigue strength is further deduced. Finally, the contact fatigue life obtained by the proposed method ad the latest international standard (IS0281: 2007) about the fatigue life prediction of rolling bearing are compared with those obtained by the statistical method. Results show that the proposed prediction method is effective and its relative error is smaier than that of the latest international standard (IS0281: 2007) with reliability R 〉 0. 93.
基金This project is supported by National Natural Science Foundation of China (No.59475037).
文摘An account of numerical solutions to the isothermal and flooded elastohydrodynamic lubrication(EHL)of a logarithmic profile roller,which is rolling over a flat plane,is given The analysis takes account of sideways flow of lubricant in the inlet region of the contact When the results are presented in suitable non dimensional groups,it is shown that more uniformly pressure and shape of the film distributing in axial direction is taken place under light loading As the increase of the load,the end closure is displayed and the oil pressure rises sharply at the ends The seal action formed by the end closure makes the film thickness a little And the minimum film thickness is transferred from the central to the ends and the value is reduced rapidly As the increase of the speed,the end closure becomes much serious The optimum crowning value obtained in EHL state is larger than the design value obtained in elastostatic contact state for the same working conditions In order to verify the correctness of theory,optical interferometry is applied to measure the oil film thickness between a logarithmic profiled roller and a glass plate under pure rolling conditions It is found the agreement between numerical solutions and experiments is very good.
基金This project is supported by Provincial Natural Science Foundation of shanxi,China(No.20001047)
文摘Based on a lot of numerical solutions to the problems of the thermalnon-Newtonian elastohydrodynamic lubrication and some fatigue tests with rollers, the lubricationfactor of involute spur gears (called gear for short) is investigated. The results suggest that gearlubrication effects bear close relations to a dimensionless parameter D which is syntheticallydetermined by gearing rotational speed, load, material, dimension and lubricant viscosity. When D<=8, the gear fatigue life increases as the lubricant viscosity is increased; When D>8, however, thelife decreases with the viscosity addition, which is in marked contrast to the lubrication factorZ_L recommended by the International Standard for Computing Cylindrical Gear Strength. At the end, aset of formulae for calculating gear lubrication factors suitable for different working conditionsare advanced.
基金Supported by National Natural Science Foundation of China(Grant No.52075279)。
文摘Lubrication failure is one of the main failure forms of gear failure.Time varying meshing stiffness is an important factor affecting the dynamic behavior of gears.However,the influence of oil film stiffness is usually ignored in the research process.In this paper,according to the meshing characteristics of double involute gears,based on the non-Newtonian thermal EHL theory,a new calculation method of normal and tangential oil film stiffness for double involute gears is established by the idea of subsection method.The oil film stiffness difference between double involute gears and common involute gears is analyzed,and the influence of tooth waist order parameters,working conditions,and thermal effect on the oil film stiffness are studied.The results reveal that there are some differences between normal and tangential oil film stiffness between double involute gears and common involute gears,but there is little difference.Compared with the torque,rotation speed and initial viscosity of the lubricating oil,the tooth waist order parameters have less influence on the oil film stiffness.Thermal effect has a certain influence on normal and tangential oil film stiffness,which indicates that the influence of thermal effect on the oil film can not be ignored.This research proposes a calculation method of normal and tangential oil film stiffness suitable for double involute gears,which provides a theoretical basis for improving the stability of the transmission.