In this article the authors have studied the stability analysis and chaos control of the fractional order Vallis and El-Nino systems. The chaos control of these systems is studied using nonlinear control method with t...In this article the authors have studied the stability analysis and chaos control of the fractional order Vallis and El-Nino systems. The chaos control of these systems is studied using nonlinear control method with the help of a new lemma for Caputo derivative and Lyapunov stability theory.The synchronization between the systems for different fractional order cases and numerical simulation through graphical plots for different particular cases clearly exhibit that the method is easy to implement and reliable for synchronization of fractional order chaotic systems. The comparison of time of synchronization when the systems pair approaches from standard order to fractional order is the key feature of the article.展开更多
An extreme warming hit Europe in summer of the year 2015. The present paper investigates the relationship between the North Atlantic Oscillation Index (NAO), Southern Oscillation Index (SOI) and El-Nino 3.4 and heat w...An extreme warming hit Europe in summer of the year 2015. The present paper investigates the relationship between the North Atlantic Oscillation Index (NAO), Southern Oscillation Index (SOI) and El-Nino 3.4 and heat waves that persist over the western and central Europe in the summer of 2015. The NCEP/NCAR Reanalysis daily dataset of the mean surface air temperature for the domains of the western and central Europe for summer months (June, July and August) of the year, 2015 has used. In addition, the time cross-section analysis of the daily gridded operational data for the mean surface air temperature over the western and central Europe from 1 June to 31 August 2015 has done. Moreover, daily datasets of the NAO, SOI, and El-Nino 3.4 for that period have used. The time series, time cross section, anomaly and correlation coefficient techniques are used to analyze the data sets. The results revealed that the cases of heat waves that existed over the western and central Europe through the summer season of the year 2015 were controlled distinctly by the negative phase of the NAO and positive phase of ENSO.展开更多
The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Centra...The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Central Pacific (CP) E1-Nifio. During EP E1-Nino, the geopotential height anomaly at 500 hPa (Z500) exhibits a Pacific-North America (PNA) pattern. During CP EI-Nifio, the Z500 anomaly shows a north positive-south negative pattern over the North Pacific. The anomalous distributions of baroclinicity and storm track are consistent with those of upper-level zonal wind for both EP and CP EI-Nino, suggesting impacts of mean flow on storm track variability. Anticyclonic wave breaking (AWB) oczurs less frequently in EP EI-Nino years, while cyclonic wave breaking (CWB) occurs more frequently in CP EI-Nino years over the North Pacific sector. Outside the North Pacific, more CWB events occur over North America during EP Ei-NiNo. When AWB events occur less frequently over the North Pacific during EP EI-Nino, Z500 decreases locally and the zonal wind is strengthened (weakened) to the south (north). This is because AWB events reflect a monopoie high anomaly at the centroid of breaking events. When CWB events occur more frequently over the North Pacific under CP EI-Nino conditions, and over North America under EP EI-Nino condition, Z500 increases (decreases) to the northeast (southwest), since CWB events are related to a northeast-southwest dipole Z500 anomaly. The anomalous RWB events act to invigorate and reinforce the circulation anomalies over the North Pacific-North America region linked with the two types of EI-Nino.展开更多
基于ERA5的逐小时100m风场数据,利用时间序列K-means聚类方法,将中国沿海冬季风能年际变化划分为四个区域,分别为北中国海(NorthChina Sea,NCS)、东海(East China Sea,ECS)、南海北部(Northern South China Sea,NSCS)及南海南部(Souther...基于ERA5的逐小时100m风场数据,利用时间序列K-means聚类方法,将中国沿海冬季风能年际变化划分为四个区域,分别为北中国海(NorthChina Sea,NCS)、东海(East China Sea,ECS)、南海北部(Northern South China Sea,NSCS)及南海南部(SouthernSouthChinaSea,SSCS)。四个区域风能的年际变化受不同气候模态的影响,其中NCS风能的年际变化与北极涛动(ArcticOscillation,AO)有关;ECS风能的年际变化与中部型ENSO及西伯利亚高压有关;SSCS和NSCS的年际变化则和东部型ENSO及大陆高压的南北位置存在联系。鉴于影响各区域风能年际变化的气候模态具有较高的可预测性,进一步评估了多个气候模式对中国沿海风能年际变化的预测技巧。结果表明,气候模式对南中国海的风能年际变化预测技巧更高,这与气候模式对ENSO的高预测技巧有关。气候模式对北方海域风能年际变化的预测技巧较差,这和气候模式不能较好地预测AO和西伯利亚高压有关。展开更多
Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investiga...Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.展开更多
利用河南省19个气象站点的逐日气温数据,并辅以海表温度距平指数(Sea Surface Temperature Anomaly,SSTA)和南方涛动指数,运用多项式拟合、相关性分析等方法,分析了1970—2019年河南省气温变化特征及其与厄尔尼诺-南方涛动(ENSO)的关系...利用河南省19个气象站点的逐日气温数据,并辅以海表温度距平指数(Sea Surface Temperature Anomaly,SSTA)和南方涛动指数,运用多项式拟合、相关性分析等方法,分析了1970—2019年河南省气温变化特征及其与厄尔尼诺-南方涛动(ENSO)的关系。结果表明:(1)1970—2019年河南省年、季节气温均呈明显的波动上升趋势,其中年均温以0.24℃/10a的速率递增,且春季气温增温速率最大,冬季气温增温速率最小。(2)过去50年,河南省的气温变化与ENSO事件的强度存在一定的相关关系,20世纪90年代以来,随着厄尔尼诺(El Nino)事件的增多和强度的加大,对应的河南省气温也显著增加。(3)在ENSO事件发生年份,河南省气温变化与SSTA值呈现比较明显的相关关系,且存在一定的滞后性。因此,河南省在强ENSO事件发生的当年或次年易发生极端灾害事件,需要提高警惕,加强防范。展开更多
基金the financial support from the UGC,New Delhi,India under the SRF scheme
文摘In this article the authors have studied the stability analysis and chaos control of the fractional order Vallis and El-Nino systems. The chaos control of these systems is studied using nonlinear control method with the help of a new lemma for Caputo derivative and Lyapunov stability theory.The synchronization between the systems for different fractional order cases and numerical simulation through graphical plots for different particular cases clearly exhibit that the method is easy to implement and reliable for synchronization of fractional order chaotic systems. The comparison of time of synchronization when the systems pair approaches from standard order to fractional order is the key feature of the article.
文摘An extreme warming hit Europe in summer of the year 2015. The present paper investigates the relationship between the North Atlantic Oscillation Index (NAO), Southern Oscillation Index (SOI) and El-Nino 3.4 and heat waves that persist over the western and central Europe in the summer of 2015. The NCEP/NCAR Reanalysis daily dataset of the mean surface air temperature for the domains of the western and central Europe for summer months (June, July and August) of the year, 2015 has used. In addition, the time cross-section analysis of the daily gridded operational data for the mean surface air temperature over the western and central Europe from 1 June to 31 August 2015 has done. Moreover, daily datasets of the NAO, SOI, and El-Nino 3.4 for that period have used. The time series, time cross section, anomaly and correlation coefficient techniques are used to analyze the data sets. The results revealed that the cases of heat waves that existed over the western and central Europe through the summer season of the year 2015 were controlled distinctly by the negative phase of the NAO and positive phase of ENSO.
基金jointly supported by the National Natural Science Foundation of China(Grant No.41275068)the Special Fund for Meteorology Research in the Public Interest(Grant No.GYHY201106017)the 973 Program(Grant No.2010CB428504)
文摘The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Central Pacific (CP) E1-Nifio. During EP E1-Nino, the geopotential height anomaly at 500 hPa (Z500) exhibits a Pacific-North America (PNA) pattern. During CP EI-Nifio, the Z500 anomaly shows a north positive-south negative pattern over the North Pacific. The anomalous distributions of baroclinicity and storm track are consistent with those of upper-level zonal wind for both EP and CP EI-Nino, suggesting impacts of mean flow on storm track variability. Anticyclonic wave breaking (AWB) oczurs less frequently in EP EI-Nino years, while cyclonic wave breaking (CWB) occurs more frequently in CP EI-Nino years over the North Pacific sector. Outside the North Pacific, more CWB events occur over North America during EP Ei-NiNo. When AWB events occur less frequently over the North Pacific during EP EI-Nino, Z500 decreases locally and the zonal wind is strengthened (weakened) to the south (north). This is because AWB events reflect a monopoie high anomaly at the centroid of breaking events. When CWB events occur more frequently over the North Pacific under CP EI-Nino conditions, and over North America under EP EI-Nino condition, Z500 increases (decreases) to the northeast (southwest), since CWB events are related to a northeast-southwest dipole Z500 anomaly. The anomalous RWB events act to invigorate and reinforce the circulation anomalies over the North Pacific-North America region linked with the two types of EI-Nino.
文摘基于ERA5的逐小时100m风场数据,利用时间序列K-means聚类方法,将中国沿海冬季风能年际变化划分为四个区域,分别为北中国海(NorthChina Sea,NCS)、东海(East China Sea,ECS)、南海北部(Northern South China Sea,NSCS)及南海南部(SouthernSouthChinaSea,SSCS)。四个区域风能的年际变化受不同气候模态的影响,其中NCS风能的年际变化与北极涛动(ArcticOscillation,AO)有关;ECS风能的年际变化与中部型ENSO及西伯利亚高压有关;SSCS和NSCS的年际变化则和东部型ENSO及大陆高压的南北位置存在联系。鉴于影响各区域风能年际变化的气候模态具有较高的可预测性,进一步评估了多个气候模式对中国沿海风能年际变化的预测技巧。结果表明,气候模式对南中国海的风能年际变化预测技巧更高,这与气候模式对ENSO的高预测技巧有关。气候模式对北方海域风能年际变化的预测技巧较差,这和气候模式不能较好地预测AO和西伯利亚高压有关。
文摘Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.
文摘利用河南省19个气象站点的逐日气温数据,并辅以海表温度距平指数(Sea Surface Temperature Anomaly,SSTA)和南方涛动指数,运用多项式拟合、相关性分析等方法,分析了1970—2019年河南省气温变化特征及其与厄尔尼诺-南方涛动(ENSO)的关系。结果表明:(1)1970—2019年河南省年、季节气温均呈明显的波动上升趋势,其中年均温以0.24℃/10a的速率递增,且春季气温增温速率最大,冬季气温增温速率最小。(2)过去50年,河南省的气温变化与ENSO事件的强度存在一定的相关关系,20世纪90年代以来,随着厄尔尼诺(El Nino)事件的增多和强度的加大,对应的河南省气温也显著增加。(3)在ENSO事件发生年份,河南省气温变化与SSTA值呈现比较明显的相关关系,且存在一定的滞后性。因此,河南省在强ENSO事件发生的当年或次年易发生极端灾害事件,需要提高警惕,加强防范。