Metastasis is responsible for the majority of deaths related to cancer and results from several interconnected processes including cell proliferation,angiogenesis,chemotaxis,cell adhesion,migration,and invasion into t...Metastasis is responsible for the majority of deaths related to cancer and results from several interconnected processes including cell proliferation,angiogenesis,chemotaxis,cell adhesion,migration,and invasion into the surrounding tissue.SDF-1αinduced chemotaxis plays an important role in cancer chemotaxis and metastasis.Binding of SDF-1α(CXCL12)to CXCR4 triggers activation of heterotrimeric G proteins that regulate actin polymerization and migration of cancer cells.展开更多
面向bilibili短视频评论数据的情感分析,旨在挖掘视频观看者对短视频的看法,使视频作者也可以快速得到自己想要的评价,进而对后续作品做出改进。针对短视频评论更新快、词汇新颖、评论过长、一词多义等因素造成的短视频评论情感分析准...面向bilibili短视频评论数据的情感分析,旨在挖掘视频观看者对短视频的看法,使视频作者也可以快速得到自己想要的评价,进而对后续作品做出改进。针对短视频评论更新快、词汇新颖、评论过长、一词多义等因素造成的短视频评论情感分析准确率低的问题,文章构建了bilibili短视频评论数据集,并提出了ELMO(Embedding From Language Model)用以构建动态词向量解决一词多义及新词的问题,通过构建TextCNN和Reformer双通道神经网络结构来提取局部、全局特征。由于Reformer采用了局部敏感哈希的特殊注意力机制,更能联系全局特征,之后将两者得到的结果拼接送入分类器得出情感分析的结果,并将得出的结果与多个深度学习模型进行对比。展开更多
蒙汉翻译属于低资源语言的翻译,面临着平行语料资源稀缺的困难,为了缓解平行语料数据稀缺和词汇表受限引发的翻译正确率低的问题,利用动态的数据预训练方法ELMo(Embeddings from Language Models),并结合多任务域信息共享的Transformer...蒙汉翻译属于低资源语言的翻译,面临着平行语料资源稀缺的困难,为了缓解平行语料数据稀缺和词汇表受限引发的翻译正确率低的问题,利用动态的数据预训练方法ELMo(Embeddings from Language Models),并结合多任务域信息共享的Transformer翻译架构进行蒙汉翻译。利用ELMo(深层语境化词表示)进行单语语料的预训练。利用FastText词嵌入算法把蒙汉平行语料库中的上下文语境相关的大规模文本进行预训练。根据多任务共享参数以实现域信息共享的原理,构建了一对多的编码器-解码器模型进行蒙汉神经机器翻译。实验结果表明,该翻译方法比Transformer基线翻译方法在长句子输入序列中可以有效提高翻译质量。展开更多
文摘Metastasis is responsible for the majority of deaths related to cancer and results from several interconnected processes including cell proliferation,angiogenesis,chemotaxis,cell adhesion,migration,and invasion into the surrounding tissue.SDF-1αinduced chemotaxis plays an important role in cancer chemotaxis and metastasis.Binding of SDF-1α(CXCL12)to CXCR4 triggers activation of heterotrimeric G proteins that regulate actin polymerization and migration of cancer cells.
文摘面向bilibili短视频评论数据的情感分析,旨在挖掘视频观看者对短视频的看法,使视频作者也可以快速得到自己想要的评价,进而对后续作品做出改进。针对短视频评论更新快、词汇新颖、评论过长、一词多义等因素造成的短视频评论情感分析准确率低的问题,文章构建了bilibili短视频评论数据集,并提出了ELMO(Embedding From Language Model)用以构建动态词向量解决一词多义及新词的问题,通过构建TextCNN和Reformer双通道神经网络结构来提取局部、全局特征。由于Reformer采用了局部敏感哈希的特殊注意力机制,更能联系全局特征,之后将两者得到的结果拼接送入分类器得出情感分析的结果,并将得出的结果与多个深度学习模型进行对比。
文摘蒙汉翻译属于低资源语言的翻译,面临着平行语料资源稀缺的困难,为了缓解平行语料数据稀缺和词汇表受限引发的翻译正确率低的问题,利用动态的数据预训练方法ELMo(Embeddings from Language Models),并结合多任务域信息共享的Transformer翻译架构进行蒙汉翻译。利用ELMo(深层语境化词表示)进行单语语料的预训练。利用FastText词嵌入算法把蒙汉平行语料库中的上下文语境相关的大规模文本进行预训练。根据多任务共享参数以实现域信息共享的原理,构建了一对多的编码器-解码器模型进行蒙汉神经机器翻译。实验结果表明,该翻译方法比Transformer基线翻译方法在长句子输入序列中可以有效提高翻译质量。