给出了求解ELSP问题(Economic Lot Scheduling Problem)的可行域的特征、启发式规则和演化神经网络设计问题.经济批量问题采用基本时段方法表示,该方法产生2类决策变量:表示基本时间段的连续变量和表示时间倍数的整数变量.在求解ELSP问...给出了求解ELSP问题(Economic Lot Scheduling Problem)的可行域的特征、启发式规则和演化神经网络设计问题.经济批量问题采用基本时段方法表示,该方法产生2类决策变量:表示基本时间段的连续变量和表示时间倍数的整数变量.在求解ELSP问题的算法设计中,可行域是判定启发式规则有效性的基础.为了给出可行域的特征,利用神经网络的演化计算,给出了求ELSP问题的初值算法,设计演化参数函数、网络结构、演化函数、演化规则,并依此获得可行域的约束条件.对在可行域约束条件和启发式规则下设计的算法进行测试,并与用HGA和一般GA方法求解ELSP问题进行比较,求解效率明显提高,使得在满足可行性的前提下总费用减小.展开更多
文摘给出了求解ELSP问题(Economic Lot Scheduling Problem)的可行域的特征、启发式规则和演化神经网络设计问题.经济批量问题采用基本时段方法表示,该方法产生2类决策变量:表示基本时间段的连续变量和表示时间倍数的整数变量.在求解ELSP问题的算法设计中,可行域是判定启发式规则有效性的基础.为了给出可行域的特征,利用神经网络的演化计算,给出了求ELSP问题的初值算法,设计演化参数函数、网络结构、演化函数、演化规则,并依此获得可行域的约束条件.对在可行域约束条件和启发式规则下设计的算法进行测试,并与用HGA和一般GA方法求解ELSP问题进行比较,求解效率明显提高,使得在满足可行性的前提下总费用减小.