An unsplit-field higher order nearly perfectly matched layer(NPML)based on the auxiliary differential equation approach is introduced in three-dimensional finite-difference timedomain lattices.The proposed scheme has ...An unsplit-field higher order nearly perfectly matched layer(NPML)based on the auxiliary differential equation approach is introduced in three-dimensional finite-difference timedomain lattices.The proposed scheme has the advantage of both the NPML scheme and the higher order concept in terms of the improved absorbing performance and considerable computational efficiency.By incorporating with the generalized material independent concept,the proposed implementation is indepen dent of the material’s type.Thus,it has the advantages of terminating arbitrary media without changing the updated equations in the PML regions.Its effectiveness and efficiency is further demonstrated through numerical examples.展开更多
This article describes the design, modelling and characterization of transmission lines for millimetre wave silicon integrated circuits up to 65 GHz. The simulation results of three different EM (electro-magnetic) s...This article describes the design, modelling and characterization of transmission lines for millimetre wave silicon integrated circuits up to 65 GHz. The simulation results of three different EM (electro-magnetic) simulators for a selected hybrid coplanar layout structure are presented. Two different deembedding methods are investigated and compared with respect to sensitivity to typical measurement errors. Finally both methods are applied to the measurement results of the fabricated test structures in a 250 nm BiCMOS technology showing good agreement to EM simulations and predicted sensitivity to measurement errors.展开更多
This paper presents design and implementation of a dual-band LNA using a 0.35 #m SiGe HBT process for 0.9 GHz GSM and 2.4 GHz WLAN applications. PCB layout parasitic effects have a vital effect on circuit performance ...This paper presents design and implementation of a dual-band LNA using a 0.35 #m SiGe HBT process for 0.9 GHz GSM and 2.4 GHz WLAN applications. PCB layout parasitic effects have a vital effect on circuit performance and are accounted for using electro-magnetic (EM) simulation. Design considerations of noise decoupling, input/output impedance matching, and current reuse are described in detail. At 0.9/2.4 GHz, gain and noise figure are 13/16 dB and 4.2/3.9 dB, respectively. Both S11 and S22 are below -10 dB. Power dissipation is 40 mW at 3.5 V supply.展开更多
基金This work was supported by the National Natural Science Foundation of China(6157102261971022).
文摘An unsplit-field higher order nearly perfectly matched layer(NPML)based on the auxiliary differential equation approach is introduced in three-dimensional finite-difference timedomain lattices.The proposed scheme has the advantage of both the NPML scheme and the higher order concept in terms of the improved absorbing performance and considerable computational efficiency.By incorporating with the generalized material independent concept,the proposed implementation is indepen dent of the material’s type.Thus,it has the advantages of terminating arbitrary media without changing the updated equations in the PML regions.Its effectiveness and efficiency is further demonstrated through numerical examples.
文摘This article describes the design, modelling and characterization of transmission lines for millimetre wave silicon integrated circuits up to 65 GHz. The simulation results of three different EM (electro-magnetic) simulators for a selected hybrid coplanar layout structure are presented. Two different deembedding methods are investigated and compared with respect to sensitivity to typical measurement errors. Finally both methods are applied to the measurement results of the fabricated test structures in a 250 nm BiCMOS technology showing good agreement to EM simulations and predicted sensitivity to measurement errors.
基金Project supported by the National Natural Science Foundation of China(Nos.61006044,60776051,61006059)the Beijing Municipal Natural Science Foundation,China(Nos.4122014,4082007)+1 种基金the Beijing Municipal Education Committee,China(Nos.KM200910005001, KM20070005015)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality
文摘This paper presents design and implementation of a dual-band LNA using a 0.35 #m SiGe HBT process for 0.9 GHz GSM and 2.4 GHz WLAN applications. PCB layout parasitic effects have a vital effect on circuit performance and are accounted for using electro-magnetic (EM) simulation. Design considerations of noise decoupling, input/output impedance matching, and current reuse are described in detail. At 0.9/2.4 GHz, gain and noise figure are 13/16 dB and 4.2/3.9 dB, respectively. Both S11 and S22 are below -10 dB. Power dissipation is 40 mW at 3.5 V supply.