Observational data such as those obtained from the magnetosheath in the downstream of Earth's bow shock have waveforms that differ from those of sinusoidal signals. In practice, they are not even aggregates of sinuso...Observational data such as those obtained from the magnetosheath in the downstream of Earth's bow shock have waveforms that differ from those of sinusoidal signals. In practice, they are not even aggregates of sinusoidal signals. Therefore, the frequency decomposition for the data requires technique that will account for the time-varying features of the data that will lead to deduction of physical meaning of the observations. The combination of empirical mode decompo- sition (EMD) and Hilbert transform has been used for extracting the various contributing oscillatory modes (EMDs) and the instantaneous frequency determination (Hilbert transform) of every physically meaningful mode called intrinsic mode func- tion (IMF). The resulting instantaneous frequencies are used to determine instantaneous wave vectors. The combination of the instantaneous frequencies and wave vectors is useful in the identification of wave modes based on the characteristics of the waves. The results show that EMD-Hilbert can be more reliable than simple Hilbert transform alone.展开更多
The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundari...The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.展开更多
The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundari...The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.展开更多
The observations of in-situ spacecraft mission in the magnetosheath and a region of thermalized subsonic plasma behind the bow shock reveal a non-linear behaviour of plasma waves. The study of waves and optics in Phys...The observations of in-situ spacecraft mission in the magnetosheath and a region of thermalized subsonic plasma behind the bow shock reveal a non-linear behaviour of plasma waves. The study of waves and optics in Physics has given the understanding of the effect of many waves coming together to form a wave field or wave packet. The common aspect of such study shows that two or more waves can superimpose constructively or destructively. The sudden high magnetic field data in the magnetosheath displays such possibility of superposition of waves. In this paper, we use the empirical mode decomposition (EMD) and Hilbert transform (HT) techniques to determine the instantaneous frequencies of low frequency plasma waves in the magnetosheath. Our analysis has shown that the turbulent behavior of magnetic field in the magnetosheath within the selected period is due to superposition of waves.展开更多
为提升局部最大同步挤压变换估算瞬时频率的精度,本文结合2阶局部最大同步挤压变换(Second-order Local Maximum Synchrosqueezing Transform,SLMSST)和动态规划(Dynamic Optimization,DO)方法提出一种识别时变结构瞬时频率的新方法。...为提升局部最大同步挤压变换估算瞬时频率的精度,本文结合2阶局部最大同步挤压变换(Second-order Local Maximum Synchrosqueezing Transform,SLMSST)和动态规划(Dynamic Optimization,DO)方法提出一种识别时变结构瞬时频率的新方法。该方法首先通过引入2阶瞬时振幅与相位得到精度更高的2阶瞬时频率估算位置。其次,搜索频率方向上时频系数的局部最大值所对应的2阶瞬时频率位置并根据这些位置对时频系数进行重排,从而得到2阶局部最大同步挤压变换后的瞬时频带。再次,运用动态规划法在限定频带范围内提取瞬时频率曲线。通过一组数值算例和一个时变拉索试验验证了所提新方法的有效性,研究结果表明:相比既有的局部最大同步挤压变换算法,2阶局部最大同步挤压变换和动态规划的联合算法不仅具有较好的精度,而且具有更好的时频聚集性。展开更多
Single Gaussian wave groups with different initial wave steepness εand width N are produced in laboratory in finite depth to study the nonlinear evolution, the extreme events and breaking. The results show that wave ...Single Gaussian wave groups with different initial wave steepness εand width N are produced in laboratory in finite depth to study the nonlinear evolution, the extreme events and breaking. The results show that wave groups with larger εwill evolve to be several envelope solitons(short wave groups). By analyzing geometric parameters, a break in the evolution of the wave elevation and asymmetric parameters after extreme wave may be an indicator for the inception of refocus and the maximal wave moving to the middle, namely, wave down-shift occurs. The analysis of the surface elevations with HHT(Hilbert-Huang Transform), which presents the concrete local variation of energy in time and frequency can be exhibited clearly, reveals that the higher frequency components play a major role in forming the extreme event and the contribution to the nonlinearity. Instantaneous energy and frequency in the vicinity of the extreme wave are also examined locally. For spilling breakers, the energy residing in the whole wave front dissipates much more due to breaking, while the energy in the rear of wave crest loses little, and the intra-wave frequency modulation increases as focus. It illustrates that the maximal first order instantaneous frequency fand the largest crest tend to emerge at the same time after extreme wave when significant energy dissipation happens, and vice versa. In addition, it shows that there is no obvious relation of the CDN(combined degree of nonlinearity) to the wave breaking for the single Gaussian wave group in finite water depth.展开更多
文摘Observational data such as those obtained from the magnetosheath in the downstream of Earth's bow shock have waveforms that differ from those of sinusoidal signals. In practice, they are not even aggregates of sinusoidal signals. Therefore, the frequency decomposition for the data requires technique that will account for the time-varying features of the data that will lead to deduction of physical meaning of the observations. The combination of empirical mode decompo- sition (EMD) and Hilbert transform has been used for extracting the various contributing oscillatory modes (EMDs) and the instantaneous frequency determination (Hilbert transform) of every physically meaningful mode called intrinsic mode func- tion (IMF). The resulting instantaneous frequencies are used to determine instantaneous wave vectors. The combination of the instantaneous frequencies and wave vectors is useful in the identification of wave modes based on the characteristics of the waves. The results show that EMD-Hilbert can be more reliable than simple Hilbert transform alone.
文摘The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.
文摘The flow of supersonic plasma is accompanied by a highly thermalized region called the Magnetoshealth found after the bow shock. Enclosed within this region are different wave modes associated with classes of boundaries which have been determined by different methods. The efficacy of Hilbert-Huang transform (HHT) is based on the conditionality of allowing for the local analysis of frequencies, which presents the physical meaning of the original signal at that instant. The observed data have been taken from Cluster II Fluxgate Magnetometer (FGM) instrument that provides advantage for the analysis in three dimensions. The result compares favourably with instantaneous frequencies computed using simple Hilbert transform (SHT) with electric field measurements of Cluster II mission already carried out in literatures. The result of this study has shown that HHT provides the best applicability in the magnetosheath data analysis than the wavelet and Fast Fourier Transform (FFT). The application of HHT based on its advantages over other methods is viewed to be very critical in the analysis of multi-frequency signals where different frequencies could be determined distinctively at a point.
文摘The observations of in-situ spacecraft mission in the magnetosheath and a region of thermalized subsonic plasma behind the bow shock reveal a non-linear behaviour of plasma waves. The study of waves and optics in Physics has given the understanding of the effect of many waves coming together to form a wave field or wave packet. The common aspect of such study shows that two or more waves can superimpose constructively or destructively. The sudden high magnetic field data in the magnetosheath displays such possibility of superposition of waves. In this paper, we use the empirical mode decomposition (EMD) and Hilbert transform (HT) techniques to determine the instantaneous frequencies of low frequency plasma waves in the magnetosheath. Our analysis has shown that the turbulent behavior of magnetic field in the magnetosheath within the selected period is due to superposition of waves.
文摘为提升局部最大同步挤压变换估算瞬时频率的精度,本文结合2阶局部最大同步挤压变换(Second-order Local Maximum Synchrosqueezing Transform,SLMSST)和动态规划(Dynamic Optimization,DO)方法提出一种识别时变结构瞬时频率的新方法。该方法首先通过引入2阶瞬时振幅与相位得到精度更高的2阶瞬时频率估算位置。其次,搜索频率方向上时频系数的局部最大值所对应的2阶瞬时频率位置并根据这些位置对时频系数进行重排,从而得到2阶局部最大同步挤压变换后的瞬时频带。再次,运用动态规划法在限定频带范围内提取瞬时频率曲线。通过一组数值算例和一个时变拉索试验验证了所提新方法的有效性,研究结果表明:相比既有的局部最大同步挤压变换算法,2阶局部最大同步挤压变换和动态规划的联合算法不仅具有较好的精度,而且具有更好的时频聚集性。
基金financially supported by the National Key Research and Development Program(Grant No.2017YFC1404200)National Nature Science Foundation of China(Grant Nos.51679031,51720105010,and 51422901)+1 种基金High-Tech Ship Research Projects Sponsored by the Ministry of Industry and Information Technology(MIIT) of Chinathe Fundamental Research Funds for the Central Universities(Grant No.DUT16TD08)
文摘Single Gaussian wave groups with different initial wave steepness εand width N are produced in laboratory in finite depth to study the nonlinear evolution, the extreme events and breaking. The results show that wave groups with larger εwill evolve to be several envelope solitons(short wave groups). By analyzing geometric parameters, a break in the evolution of the wave elevation and asymmetric parameters after extreme wave may be an indicator for the inception of refocus and the maximal wave moving to the middle, namely, wave down-shift occurs. The analysis of the surface elevations with HHT(Hilbert-Huang Transform), which presents the concrete local variation of energy in time and frequency can be exhibited clearly, reveals that the higher frequency components play a major role in forming the extreme event and the contribution to the nonlinearity. Instantaneous energy and frequency in the vicinity of the extreme wave are also examined locally. For spilling breakers, the energy residing in the whole wave front dissipates much more due to breaking, while the energy in the rear of wave crest loses little, and the intra-wave frequency modulation increases as focus. It illustrates that the maximal first order instantaneous frequency fand the largest crest tend to emerge at the same time after extreme wave when significant energy dissipation happens, and vice versa. In addition, it shows that there is no obvious relation of the CDN(combined degree of nonlinearity) to the wave breaking for the single Gaussian wave group in finite water depth.