通过1-乙基-3-甲基咪唑硫酸乙酯离子液体(EMIES)和对甲苯磺酸(p-TsOH)的混合物制备EMIES/p-TsOH型低共熔溶剂。其结构特征通过红外光谱、氢谱和热重技术进行了分析。并以EMIES/p-TsOH作为催化剂与萃取剂,H2O2作为氧化剂研究了其对模拟...通过1-乙基-3-甲基咪唑硫酸乙酯离子液体(EMIES)和对甲苯磺酸(p-TsOH)的混合物制备EMIES/p-TsOH型低共熔溶剂。其结构特征通过红外光谱、氢谱和热重技术进行了分析。并以EMIES/p-TsOH作为催化剂与萃取剂,H2O2作为氧化剂研究了其对模拟油中的硫化物的脱除性能。考察了反应温度、n(H2O2)/n(S)比、低共熔溶剂加入量及硫化物类型对脱硫效果的影响。在最佳的条件下,模拟油中二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和苯并噻吩(BT)的脱除率分别为96.2%、92.2%和88.8%。经过五次循环使用后,DBT的脱除率仍达到93.6%。对该脱硫体系进行了动力学分析,其表观活化能为66.4 k J/mol。展开更多
本研究分析了2019-2023年间在Web of Science核心期刊中发表的有关EMI教学对学生学业成就影响的研究论文。研究发现,相关研究主要围绕影响学生在EMI课程中取得学业成就的潜在因素和EMI课程对学生学业成就的促进程度两方面展开。前者聚...本研究分析了2019-2023年间在Web of Science核心期刊中发表的有关EMI教学对学生学业成就影响的研究论文。研究发现,相关研究主要围绕影响学生在EMI课程中取得学业成就的潜在因素和EMI课程对学生学业成就的促进程度两方面展开。前者聚焦学生的英语水平、自我效能感和动机三种因素对学业成就的预测作用,后者关注EMI课程对学生英语水平和学习内容的影响。最后,本文简要讨论了已有研究的局限性和未来研究的方向。展开更多
The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high ...The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices.展开更多
高等教育国际化(internationalization of higher education)是指将国际合作、跨文化交流或全球维度融入高等教育的过程中~([1])。在经济全球化、社会信息化和教育现代化的的时代要求下,推动高等教育的国际化是一个必然的趋势~([2])。...高等教育国际化(internationalization of higher education)是指将国际合作、跨文化交流或全球维度融入高等教育的过程中~([1])。在经济全球化、社会信息化和教育现代化的的时代要求下,推动高等教育的国际化是一个必然的趋势~([2])。国际化教育的根本目的是培育出既能继承和发扬本国优秀文化,又能理解和包容世界先进文化的,有知识、有思想、有技能、有创新精神和有国际竞争力的高水平人才~([3])。在这样的国际化背景的影响下,世界许多国家纷纷建立起了英语作为教授媒介的专业课程,简称EMI(English Medium Instruction)课程。展开更多
Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport,as well as when analyzing the physical and chemical properties of the atmosphere.One of the most ef...Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport,as well as when analyzing the physical and chemical properties of the atmosphere.One of the most effective ways to obtain high spatial resolution ozone profiles is through satellite observations.The Environmental Trace Gases Monitoring Instrument(EMI)deployed on the Gaofen-5 satellite is the first Chinese ultraviolet-visible hyperspectral spectrometer.However,retrieving ozone profiles using backscattered radiance values measured by the EMI is challenging due to unavailable measurement errors and a low signal-to-noise ratio.The algorithm developed for the Tropospheric Monitoring Instrument did not allow us to retrieve 87%of the EMI pixels.Therefore,we developed an algorithm specific to the characteristics of the EMI.The fitting residuals are smaller than 0.3%in most regions.The retrieved ozone profiles were in good agreement with ozonesonde data,with maximum mean biases of 20%at five latitude bands.By applying EMI averaging kernels to the ozonesonde profiles,the integrated stratospheric column ozone and tropospheric column ozone also showed excellent agreement with ozonesonde data,The lower layers(0-7.5 km)of the EMI ozone profiles reflected the seasonal variation in surface ozone derived from the China National Environmental Monitoring Center(CNEMC).However,the upper layers(9.7-16.7 km)of the ozone profiles show different trends,with the ozone peak occurring at an altitude of 9.7-16.7 km in March,2019.A stratospheric intrusion event in central China from August 11 to 15,2019,is captured using the EMI ozone profiles,potential vorticity data,and relative humidity data.The increase in the CNEMC ozone co ncentration showed that downward transport enhanced surface ozone pollution.展开更多
Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with li...Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.展开更多
Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig...Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.展开更多
文摘通过1-乙基-3-甲基咪唑硫酸乙酯离子液体(EMIES)和对甲苯磺酸(p-TsOH)的混合物制备EMIES/p-TsOH型低共熔溶剂。其结构特征通过红外光谱、氢谱和热重技术进行了分析。并以EMIES/p-TsOH作为催化剂与萃取剂,H2O2作为氧化剂研究了其对模拟油中的硫化物的脱除性能。考察了反应温度、n(H2O2)/n(S)比、低共熔溶剂加入量及硫化物类型对脱硫效果的影响。在最佳的条件下,模拟油中二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和苯并噻吩(BT)的脱除率分别为96.2%、92.2%和88.8%。经过五次循环使用后,DBT的脱除率仍达到93.6%。对该脱硫体系进行了动力学分析,其表观活化能为66.4 k J/mol。
文摘本研究分析了2019-2023年间在Web of Science核心期刊中发表的有关EMI教学对学生学业成就影响的研究论文。研究发现,相关研究主要围绕影响学生在EMI课程中取得学业成就的潜在因素和EMI课程对学生学业成就的促进程度两方面展开。前者聚焦学生的英语水平、自我效能感和动机三种因素对学业成就的预测作用,后者关注EMI课程对学生英语水平和学习内容的影响。最后,本文简要讨论了已有研究的局限性和未来研究的方向。
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(52103090)the Natural Science Foundation of Guangdong Province(2022A1515011780)Autonomous deployment project of China National Key Laboratory of Materials for Integrated Circuits(NKLJC-Z2023-B03).
文摘The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices.
文摘高等教育国际化(internationalization of higher education)是指将国际合作、跨文化交流或全球维度融入高等教育的过程中~([1])。在经济全球化、社会信息化和教育现代化的的时代要求下,推动高等教育的国际化是一个必然的趋势~([2])。国际化教育的根本目的是培育出既能继承和发扬本国优秀文化,又能理解和包容世界先进文化的,有知识、有思想、有技能、有创新精神和有国际竞争力的高水平人才~([3])。在这样的国际化背景的影响下,世界许多国家纷纷建立起了英语作为教授媒介的专业课程,简称EMI(English Medium Instruction)课程。
基金supported by the National Natural Science Foundation of China(42225504 and 41977184)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23020301)+3 种基金the Key Research and Development Project of Anhui Province(202104i07020002)the Major Projects of High Resolution Earth Observation Systems of National Science and Technology(05-Y30B01-9001-19/20-3)the Key Laboratory of Atmospheric Chemistry/China Meteorological Administration(LAC/CMA)(2022B06)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021443).
文摘Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport,as well as when analyzing the physical and chemical properties of the atmosphere.One of the most effective ways to obtain high spatial resolution ozone profiles is through satellite observations.The Environmental Trace Gases Monitoring Instrument(EMI)deployed on the Gaofen-5 satellite is the first Chinese ultraviolet-visible hyperspectral spectrometer.However,retrieving ozone profiles using backscattered radiance values measured by the EMI is challenging due to unavailable measurement errors and a low signal-to-noise ratio.The algorithm developed for the Tropospheric Monitoring Instrument did not allow us to retrieve 87%of the EMI pixels.Therefore,we developed an algorithm specific to the characteristics of the EMI.The fitting residuals are smaller than 0.3%in most regions.The retrieved ozone profiles were in good agreement with ozonesonde data,with maximum mean biases of 20%at five latitude bands.By applying EMI averaging kernels to the ozonesonde profiles,the integrated stratospheric column ozone and tropospheric column ozone also showed excellent agreement with ozonesonde data,The lower layers(0-7.5 km)of the EMI ozone profiles reflected the seasonal variation in surface ozone derived from the China National Environmental Monitoring Center(CNEMC).However,the upper layers(9.7-16.7 km)of the ozone profiles show different trends,with the ozone peak occurring at an altitude of 9.7-16.7 km in March,2019.A stratospheric intrusion event in central China from August 11 to 15,2019,is captured using the EMI ozone profiles,potential vorticity data,and relative humidity data.The increase in the CNEMC ozone co ncentration showed that downward transport enhanced surface ozone pollution.
基金the support from the Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China(U1837601)National Natural Science Foundation of China(52273255)+3 种基金NASF Joint Fund of National Natural Science Foundation of China and China Academy of Engineering Physics(U2130118)China Postdoctoral Science Foundation(2023M732029)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023092)Undergraduate Innovation&Business Program in Northwestern Polytechnical University(XN2022226)。
文摘Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology.It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties.Herein,a boron-silica-tantalum ternary hybrid phenolic aerogel(BSiTa-PA)with exceptional thermal stability,extensive mechanical strength,low thermal conductivity(49.6 mW m^(-1)K^(-1)),and heightened ablative resistance is prepared by an expeditious method.After extremely thermal erosion,the obtained carbon aerogel demonstrates noteworthy electromagnetic interference(EMI)shielding performance with an efficiency of 31.6 dB,accompanied by notable loading property with specific modulus of 272.8 kN·m kg^(-1).This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.
基金the National Natural Science Foundation of China (52273083, 51903145)Key Research and Development Project of Shaanxi Province (2023-YBGY-476)+1 种基金Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0691)National College Students Innovation and Entrepreneurship Training Program (202310699172)
文摘Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics.