为解决当前动车组高级修工艺管理存在的问题,基于高级修部件物料清单(BOM,Bill of Materials)和工艺BOM的构建逻辑,以及工艺基础数据标准化、参数化、结构化的实际需要,融合工艺BOM与工艺流程的映射方法,采用SpringBoot+VUE前后端分离...为解决当前动车组高级修工艺管理存在的问题,基于高级修部件物料清单(BOM,Bill of Materials)和工艺BOM的构建逻辑,以及工艺基础数据标准化、参数化、结构化的实际需要,融合工艺BOM与工艺流程的映射方法,采用SpringBoot+VUE前后端分离的开发架构,设计了高级修工艺数字化管理系统。该系统实现了高级修工艺编制规范的统一和编制流程的优化,可自动生成工艺流程图和甘特图,并将准确的规格数据传输到制造执行系统(MES),已在中国铁路上海局集团有限公司上海动车段转向架车间开展应用,满足工艺数字化管理和辅助数字化生产的需要。展开更多
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover...The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.展开更多
With the improvement of the running speed of China’s high-speed trains,the demands for running status monitoring and security assurance of High-speed Electric Multiple Units(EMU)have increased significantly.However,t...With the improvement of the running speed of China’s high-speed trains,the demands for running status monitoring and security assurance of High-speed Electric Multiple Units(EMU)have increased significantly.However,the current safety monitoring systems are independent,which is not conducive to the comprehensive monitoring and information sharing of the whole vehicle.The temperature monitoring of running gear is insensitive to early failures.How to develop a train operation safety monitoring system with strong engineering implementation and high integration is a key problem to be solved.For the monitoring of running stationarity,frame stability and running gear health of China’s high-speed trains,an integrated safety monitoring system framework is designed,and the logic and algorithm for the diagnosis of stationarity,stability and health states of rotating parts are constructed.Monitoring software which fused the temperature,high and low frequency vibration data is developed,and the design and installation of the vibration temperature composite sensors are completed.The research results have realized the integration and comprehensive processing of multiple monitoring systems,completed the improvement from single component and vehicle-level safety monitoring to multi-system,train-level and interactive monitoring.In the process of real vehicle application,the developed monitoring system acquires the vehicle operation status data accurately and in real time.The constructed diagnosis algorithm and logic evaluates the vehicle operation status accurately and in a timely manner,and avoids the progression from fault to accident.The research results show that the integrated safety monitoring system can provide technical support for train operation safety.展开更多
文摘为解决当前动车组高级修工艺管理存在的问题,基于高级修部件物料清单(BOM,Bill of Materials)和工艺BOM的构建逻辑,以及工艺基础数据标准化、参数化、结构化的实际需要,融合工艺BOM与工艺流程的映射方法,采用SpringBoot+VUE前后端分离的开发架构,设计了高级修工艺数字化管理系统。该系统实现了高级修工艺编制规范的统一和编制流程的优化,可自动生成工艺流程图和甘特图,并将准确的规格数据传输到制造执行系统(MES),已在中国铁路上海局集团有限公司上海动车段转向架车间开展应用,满足工艺数字化管理和辅助数字化生产的需要。
基金supported by the National Natural Science Foundation of China(Grant 51305437)Guangdong Innovative Research Team Program of China(Grant201001D0104648280)
文摘The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
基金supported by the Major Special Projects in Chang-sha City(Grant No.kh2103015)the Natural Science Foundation of Hunan Province China(Grant No.2021JJ40765)+1 种基金Joint Funds of the National Natural Science Foundation of China(Grant No.U2268205)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2020QNRC001).
文摘With the improvement of the running speed of China’s high-speed trains,the demands for running status monitoring and security assurance of High-speed Electric Multiple Units(EMU)have increased significantly.However,the current safety monitoring systems are independent,which is not conducive to the comprehensive monitoring and information sharing of the whole vehicle.The temperature monitoring of running gear is insensitive to early failures.How to develop a train operation safety monitoring system with strong engineering implementation and high integration is a key problem to be solved.For the monitoring of running stationarity,frame stability and running gear health of China’s high-speed trains,an integrated safety monitoring system framework is designed,and the logic and algorithm for the diagnosis of stationarity,stability and health states of rotating parts are constructed.Monitoring software which fused the temperature,high and low frequency vibration data is developed,and the design and installation of the vibration temperature composite sensors are completed.The research results have realized the integration and comprehensive processing of multiple monitoring systems,completed the improvement from single component and vehicle-level safety monitoring to multi-system,train-level and interactive monitoring.In the process of real vehicle application,the developed monitoring system acquires the vehicle operation status data accurately and in real time.The constructed diagnosis algorithm and logic evaluates the vehicle operation status accurately and in a timely manner,and avoids the progression from fault to accident.The research results show that the integrated safety monitoring system can provide technical support for train operation safety.