High speed railway technologies are rapidly development in the world.The total distance of the high speed railway is more than 40,000 kilometers in China,and many types of high speed Electrical Multi-Units(EMUs)are op...High speed railway technologies are rapidly development in the world.The total distance of the high speed railway is more than 40,000 kilometers in China,and many types of high speed Electrical Multi-Units(EMUs)are operated.The top operation velocity of the train reaches 350 km/h.New science and technologies are developing rapidly.New generation technologies such as the information technology,intelligent manufacturing,new material and processing,innovating design philosophy have revolutionary influence on the high speed train.It promotes the high speed train performance such as intelligence,reliable operation and environment-friendly.Based on many years investigation of the trend of the technology development and requirement of general public,the trend of technology development in five aspects are presented in this paper.The five aspects include economic applicability,high speed and high efficiency,green and low carbon,intelligent safety,comfortable and high quality.展开更多
Purpose A capture superconducting solenoid is designed for the Experimental Muon Source(EMuS)which is proposed at China Spallation Neutron Source(CSNS)in Dongguan for muon science and neutrino physics research.The cap...Purpose A capture superconducting solenoid is designed for the Experimental Muon Source(EMuS)which is proposed at China Spallation Neutron Source(CSNS)in Dongguan for muon science and neutrino physics research.The capture superconducting solenoid of the EMuS consists of four coils with different radius generating a peak central field of 5 T at 3944 A of nominal current.Methods The aluminum-stabilized NbTi Rutherford cable is used to wind the solenoid coils.Iron yokes are arranged for flux returning and field shielding.Ti alloy Ti-6Al-4V rods are adopted to support the cold mass.The vacuum vessel of the solenoid is manufactured by 304 stainless steel.The coils are pre-stressed by interference fits assembly,the outer support cylinder or binding the coils with aluminum alloy wire in order to reduce the peak stress of the coils.The parameters of the coils such as the thickness and the tensile stress of the binding wire and the thickness of the outer support cylinder have been optimized in order to minimize the cold mass by using FEA software.Results The maximum stress in the winding is allowable with two layers of 40 mm thickness outer support cylinder through interference fits assembly.But the maximum stress in the winding is allowable with 40 mm thickness of binding wire and 30 mm thickness of outer support cylinder.Conclusion The method of binding the windings with aluminum alloy wire is suggested to be used to manufacture the solenoid.This paper presents the mechanical design and analysis of the capture superconducting solenoid for EMuS.展开更多
An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A ...An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A 128-channel muon spin rotation/relaxation/resonance(μSR) spectrometer is proposed as a prototype surface muon spectrometer in a sub-branch of EMuS. The prototype spectrometer includes a detection system, sample environment, and supporting mechanics. The current design has two rings located at the forward and backward directions of the muon spin with 64 detectors per ring. The simulation shows that the highest asymmetry of approximately 0.28 is achieved by utilizing two 10-mm-thick brass degraders. To obtain the optimal asymmetry, the two-ring structure is updated to a four-ring structure with 32 segments in each ring. An asymmetry of 0.42 is obtained through the simulation, which is higher than that of all the current μSR spectrometers in the world.展开更多
文摘High speed railway technologies are rapidly development in the world.The total distance of the high speed railway is more than 40,000 kilometers in China,and many types of high speed Electrical Multi-Units(EMUs)are operated.The top operation velocity of the train reaches 350 km/h.New science and technologies are developing rapidly.New generation technologies such as the information technology,intelligent manufacturing,new material and processing,innovating design philosophy have revolutionary influence on the high speed train.It promotes the high speed train performance such as intelligence,reliable operation and environment-friendly.Based on many years investigation of the trend of the technology development and requirement of general public,the trend of technology development in five aspects are presented in this paper.The five aspects include economic applicability,high speed and high efficiency,green and low carbon,intelligent safety,comfortable and high quality.
基金National Natural Science Foundation of China(Project:11527811).
文摘Purpose A capture superconducting solenoid is designed for the Experimental Muon Source(EMuS)which is proposed at China Spallation Neutron Source(CSNS)in Dongguan for muon science and neutrino physics research.The capture superconducting solenoid of the EMuS consists of four coils with different radius generating a peak central field of 5 T at 3944 A of nominal current.Methods The aluminum-stabilized NbTi Rutherford cable is used to wind the solenoid coils.Iron yokes are arranged for flux returning and field shielding.Ti alloy Ti-6Al-4V rods are adopted to support the cold mass.The vacuum vessel of the solenoid is manufactured by 304 stainless steel.The coils are pre-stressed by interference fits assembly,the outer support cylinder or binding the coils with aluminum alloy wire in order to reduce the peak stress of the coils.The parameters of the coils such as the thickness and the tensile stress of the binding wire and the thickness of the outer support cylinder have been optimized in order to minimize the cold mass by using FEA software.Results The maximum stress in the winding is allowable with two layers of 40 mm thickness outer support cylinder through interference fits assembly.But the maximum stress in the winding is allowable with 40 mm thickness of binding wire and 30 mm thickness of outer support cylinder.Conclusion The method of binding the windings with aluminum alloy wire is suggested to be used to manufacture the solenoid.This paper presents the mechanical design and analysis of the capture superconducting solenoid for EMuS.
基金supported by the National Natural Science Foundation of China(No.11527811)the Key Program of State Key Laboratory of Particle Detection and ElectronicsA part of the work performed in the UKRI ISIS Detector Group was sponsored by the China Scholarship Council
文摘An experimental muon source(EMuS) will be built at the China Spallation Neutron Source(CSNS). In phase I of CSNS, it has been decided that EMuS will provide a proton beam of 5 kW and 1.6 GeV to generate muon beams. A 128-channel muon spin rotation/relaxation/resonance(μSR) spectrometer is proposed as a prototype surface muon spectrometer in a sub-branch of EMuS. The prototype spectrometer includes a detection system, sample environment, and supporting mechanics. The current design has two rings located at the forward and backward directions of the muon spin with 64 detectors per ring. The simulation shows that the highest asymmetry of approximately 0.28 is achieved by utilizing two 10-mm-thick brass degraders. To obtain the optimal asymmetry, the two-ring structure is updated to a four-ring structure with 32 segments in each ring. An asymmetry of 0.42 is obtained through the simulation, which is higher than that of all the current μSR spectrometers in the world.