A theoretical model to simulate an end-pumped CW Nd^3+:GdVO4 laser at 1063 nm is presented. Its essence is to use the propagation equations to demonstrate the spatial evolutions of the pump and the laser powers in t...A theoretical model to simulate an end-pumped CW Nd^3+:GdVO4 laser at 1063 nm is presented. Its essence is to use the propagation equations to demonstrate the spatial evolutions of the pump and the laser powers in the cavity, hence it is applicable to both low and high gain lasers. The simulation results obtained by this model are in good agreement with the experimental observations reported in the literature for a Ti:sapphlre-pumped Nd^3+:GdVO4 laser. Moreover, some parameters, such as the reflectivity of output coupler, the spot size of laser beam and the crystal length, are discussed with a view to optimizing the laser performance.展开更多
In this research, numerical simulation and experimental results of thermal stress due to an end-pumped Nd:YVO4 a-cut crystal with 0.5% Nd doping were compared. The findings demonstrate a good consistency with experim...In this research, numerical simulation and experimental results of thermal stress due to an end-pumped Nd:YVO4 a-cut crystal with 0.5% Nd doping were compared. The findings demonstrate a good consistency with experiment. As in this paper has been predicted, at the pumping power above 23 watt, thermal stress has been bigger than thermal facture limit and crystal has broken.展开更多
A laser-diode end-pumped Nd:YVO4 crystal laser is demonstrated to emit the first-order Laguerre- Gaussian (LGm) mode with 502-mW laser power and 22% slope efficiency. Tile LGm-mode is lased only when the pumping ar...A laser-diode end-pumped Nd:YVO4 crystal laser is demonstrated to emit the first-order Laguerre- Gaussian (LGm) mode with 502-mW laser power and 22% slope efficiency. Tile LGm-mode is lased only when the pumping area locates in the central part of the laser crystal's front surface, and thereafter the symmetrical LGm-HGol-TEM00 mode transition happens when laser crystal is moved laterally inside several-tens-micron area. The possible mechanism responsible for the phenomenon of symmetrical mode transition is also discussed.展开更多
We demonstrate an end-pumped, c-cut Nd:YVO4 laser that emitted first-order Laguerre-Gaussian (LGol) beam by adjusting the position of focused pump beam relative to laser crystal. The pumping light reached the laser...We demonstrate an end-pumped, c-cut Nd:YVO4 laser that emitted first-order Laguerre-Gaussian (LGol) beam by adjusting the position of focused pump beam relative to laser crystal. The pumping light reached the laser crystal has circular and solid intensity profile. The laser is compact and stable, and the obtained LG01 beam power reaches 202 mW with -25% slope efficiency.展开更多
A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be ...A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be 2.1 W at a repetition rate of 50 kHz with an output power instability of less than 0.38% and beam quality factor M^2 of 1.45. Using the two lines, the highly coherent and narrow linewidth terahertz radiation of 3.23 THz can be generated in an organic 4-N, N-dimethylamino-methyl-stilbazolium tosylate (DAST) crystal. Meanwhile, the multi-wavelength red laser at 659.5, 664 and 669 nm is generated by frequency doubling and sum frequency processes in a lithium triborate (LBO) crystal. The average red laser output power is enhanced up to 1.625 W at a repetition rate of 15 kHz with an output power instability of better than 0.53% and beam quality factor M^2 of 6.05. Using the three lines, it is possible to generate the multi-wavelength THz radiation of 3.3, 3.43 and 6.73 THz in an appropriate difference frequency crystal.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10104009)
文摘A theoretical model to simulate an end-pumped CW Nd^3+:GdVO4 laser at 1063 nm is presented. Its essence is to use the propagation equations to demonstrate the spatial evolutions of the pump and the laser powers in the cavity, hence it is applicable to both low and high gain lasers. The simulation results obtained by this model are in good agreement with the experimental observations reported in the literature for a Ti:sapphlre-pumped Nd^3+:GdVO4 laser. Moreover, some parameters, such as the reflectivity of output coupler, the spot size of laser beam and the crystal length, are discussed with a view to optimizing the laser performance.
文摘In this research, numerical simulation and experimental results of thermal stress due to an end-pumped Nd:YVO4 a-cut crystal with 0.5% Nd doping were compared. The findings demonstrate a good consistency with experiment. As in this paper has been predicted, at the pumping power above 23 watt, thermal stress has been bigger than thermal facture limit and crystal has broken.
基金supported by the National Natural Science Foundation of China(No.61275206)the National "973" Project of China(No.2014CB921300)
文摘A laser-diode end-pumped Nd:YVO4 crystal laser is demonstrated to emit the first-order Laguerre- Gaussian (LGm) mode with 502-mW laser power and 22% slope efficiency. Tile LGm-mode is lased only when the pumping area locates in the central part of the laser crystal's front surface, and thereafter the symmetrical LGm-HGol-TEM00 mode transition happens when laser crystal is moved laterally inside several-tens-micron area. The possible mechanism responsible for the phenomenon of symmetrical mode transition is also discussed.
文摘We demonstrate an end-pumped, c-cut Nd:YVO4 laser that emitted first-order Laguerre-Gaussian (LGol) beam by adjusting the position of focused pump beam relative to laser crystal. The pumping light reached the laser crystal has circular and solid intensity profile. The laser is compact and stable, and the obtained LG01 beam power reaches 202 mW with -25% slope efficiency.
基金supported by the National Basic Research Program of China (Grant No 2007CB310403)the Tianjin Municipal Primary application and Frontier Technology Research Plan,China (Grant No 07JCYBJC06200)
文摘A diode-end-pumped Nd:YAG dual-wavelength laser operating at 1319 and 1338 nm is demonstrated. The maximum average output power of the quasi-continuous wave linearly polarized dual-wavelength laser is obtained to be 2.1 W at a repetition rate of 50 kHz with an output power instability of less than 0.38% and beam quality factor M^2 of 1.45. Using the two lines, the highly coherent and narrow linewidth terahertz radiation of 3.23 THz can be generated in an organic 4-N, N-dimethylamino-methyl-stilbazolium tosylate (DAST) crystal. Meanwhile, the multi-wavelength red laser at 659.5, 664 and 669 nm is generated by frequency doubling and sum frequency processes in a lithium triborate (LBO) crystal. The average red laser output power is enhanced up to 1.625 W at a repetition rate of 15 kHz with an output power instability of better than 0.53% and beam quality factor M^2 of 6.05. Using the three lines, it is possible to generate the multi-wavelength THz radiation of 3.3, 3.43 and 6.73 THz in an appropriate difference frequency crystal.