AIM:To study whether over-starvation aggravates intestinal mucosal injury and promotes bacterial and endotoxin translocation in a high-altitude hypoxic environment.METHODS:Sprague-Dawley rats were exposed to hy-pobari...AIM:To study whether over-starvation aggravates intestinal mucosal injury and promotes bacterial and endotoxin translocation in a high-altitude hypoxic environment.METHODS:Sprague-Dawley rats were exposed to hy-pobaric hypoxia at a simulated altitude of 7000 m for 72 h.Lanthanum nitrate was used as a tracer to detect intestinal injury.Epithelial apoptosis was observed with terminal deoxynucleotidyl transferase dUTP nick end labeling staining.Serum levels of diamino oxidase(DAO),malondialdehyde(MDA),glutamine(Gln),superoxide dismutase(SOD) and endotoxin were measured in intestinal mucosa.Bacterial translocation was detected in blood culture and intestinal homogenates.In addition,rats were given Gln intragastrically to observe its protective effect on intestinal injury.RESULTS:Apoptotic epithelial cells,exfoliated villi and inflammatory cells in intestine were increased with edema in the lamina propria accompanying effusion of red blood cells.Lanthanum particles were found in the intercellular space and intracellular compartment.Bacterial translocation to mesenteric lymph nodes(MLN) and spleen was evident.The serum endotoxin,DAO and MDA levels were significantly higher while the serum SOD,DAO and Gln levels were lower in intestine(P< 0.05).The bacterial translocation number was lower in the high altitude hypoxic group than in the high altitude starvation group(0.47±0.83 vs 2.38±1.45,P<0.05).The bacterial translocation was found in each organ,especially in MLN and spleen but not in peripheral blood.The bacterial and endotoxin translocations were both markedly improved in rats after treatment with Gln.CONCLUSION:High-altitude hypoxia and starvation cause severe intestinal mucosal injury and increase bacterial and endotoxin translocation,which can be treated with Gln.展开更多
Objective: To set up a swine model of severe acute pancreatitis(SAP) and to observe its relationship with the gut-originated bacteria/endotoxin translocation. Methods: Forty pigs weighing 17-22 kg were randomly di...Objective: To set up a swine model of severe acute pancreatitis(SAP) and to observe its relationship with the gut-originated bacteria/endotoxin translocation. Methods: Forty pigs weighing 17-22 kg were randomly diyided into SAP group (n=34) and sham-SAP group (n=6). By injecting 1 ml/kg of combined solution of 5% sodium taurocholate and 8 000-10 000 benzoyl arginine ethyl ester(BAEE) units trypsin per milliliter into pancreas via pancreatic duct, SAP was induced under anesthesia. Endotoxin samples from vena cava were determined by chromogenic limulus amebocyte lysate (LAL) technique. Both portal and central vena blood samples were collected before and 72 h after the induction of SAP and cultured for both aerobic and anaerobic bacterial growth. Animals were sacrificed at the end of experiments by injecting 20 ml of 10% KCl intravenously and tissue specimens of mesenteriolum and mesocolon lymph nodes, lung, pulmonary portal lymph nods and pancreas were taken immediately after animal death, and homogenized for bacteriological studies. Results: Systemic plasma endotoxin levels increased rapidly 6 h post induction of SAP(PIS) with a peak at 48 h PIS (P〈0.01). The magnitude of bacterial translocation in both portal and systemic blood and remote systemic organs as well were recovered PIS. Conclusion: (1) A swine model of SAP was established; (2)The early endotoxemia PIS seamed probable originated from gut endotoxin translocation; (3)The magnitude of bacterial translocation in both portal and systemic blood and the remote systemic organs as well were recovered at 72h PIS.展开更多
The main reason for the death of the patient with acute hemorrhage necrosis pancreatitis (AHNP) is pancreatic infection and multi-organ failure caused by endotoxemia and intestinal bacterial translocation[1-7]. Howeve...The main reason for the death of the patient with acute hemorrhage necrosis pancreatitis (AHNP) is pancreatic infection and multi-organ failure caused by endotoxemia and intestinal bacterial translocation[1-7]. However, the pathogenesis of endotoxemia and intestinal bacterial translocation remains a question[8-10]; moreover, no effective method of prevention and cure for it has been found till now[11 -15] In the present study, we infused low dose dopamine and low molecular weight dextran through the catheters to abdominal aorta and portal vein, and observed its influence on the endotoxin concentration in plasma and the rate of translocation of intestinal bacteria in AHNP rats.展开更多
Extrahepatic biliary obstruction promotes intestinal translocation of bacteria and endotoxin and this process is an important cause of morbidity and mortality in patients with jaundice. This study was undertaken to in...Extrahepatic biliary obstruction promotes intestinal translocation of bacteria and endotoxin and this process is an important cause of morbidity and mortality in patients with jaundice. This study was undertaken to investigate the effect and mechanism of recombinant human growth hormone (rhGH) and to alleviate intestinal translocation of bacteria and endotoxin in murine obstructive jaundice. METHODS:A group of 42 Wistar rats were divided into 3 groups:sham operation (SO), bile duct ligation (BDL), and BDL and rhGH treatment (rhGH). By the end of the experiment,on day 7, the animals were killed, and their liver function and serum endotoxin were measured, bacterial cultures of the liver, kidney and mesenchymal lymph were made. Terminal ileum mucosa was observed under an electron microscope. RESULTS:Liver function was improved more significantly in the rhGH group than in the BDL group. The value of endotoxin in the rhGH group was 0.38±0.03 EU/ml, significantly lower than that in the BDL group (0.65±0.04 EU/ml, P【0.01), and similar to that in the SO group (0.30±0.02 EU/ml, P】0.05). The rate of bacteria translocation in the liver, kidney and mesenteric lymph was much higher in the BDL group than in other two groups. The rate of bacteria translocation in mesenteric lymph was 64.29%,significantly higher than that in the SO group and the rhGH group (P【0.05). There was no significant difference in bacteria translocation rate between the SO group and the rhGH group (P】0.05). Under an electron microscope , ileum mucosa epithelial cells in the BDL group were necrotic, and organelle were markedly metamorphic. In the rhGH group, ultrastructural changes were less evident or similar to those in the SO group. CONCLUSION:rhGH has significant protective effects on intestinal mucosa barrier in obstructive jaundice, and reduces intestinal translocation of bacteria and endotoxin.展开更多
BACKGROUND: Previous studies have shown that autonomic dysfunction results in gastrointestinal motility disorders and ultimately results in bacterial translocation following acute spinal cord injury (SCI). Intensiv...BACKGROUND: Previous studies have shown that autonomic dysfunction results in gastrointestinal motility disorders and ultimately results in bacterial translocation following acute spinal cord injury (SCI). Intensive methylprednisolone dosing improves neurological recovery in SCI patients. However, it remains uncertain whether high-dose methylprednisolone inhibits bacterial translocation and endotoxin release following acute SCI. OBJECTIVE: To investigate the inhibitory effect of methylprednisolone on bacterial translocation and endotoxin release from the gut in paraplegic rats. DESIGN, TIME AND SETTING: The randomized, controlled study was performed at the Orthopedic Lab, First Affiliated Hospital, Nanchang University, China, from April to December 2008. MATERIALS: Methylprednisolone (Pfizer, USA), automatic microbial identification instrument ATB Expression and reagent ID 32 system (BioMerieux, France), Limulus test kit (ACC, USA), and optical microscope (Olympus, Japan) were used in this study. METHODS: A paraplegia model was established following SCI in 48 Wistar rats, aged 7 weeks. The rats were equally and randomly assigned to saline and methylprednisolone groups. Immediately post-injury, the methylprednisolone group was administered 30 mg/kg methylprednisolone via caudal intravenous infusion, followed by a 23-hour infusion of 5.4 mg/kg per hour. The saline group received an equal volume of saline as placebo. MAIN OUTCOME MEASURES: At 24 hours, 72 hours, and 1 week after SCI, blood samples were collected for bacterial cultures, and bacteria and endotoxin were identified using ATB Expression and Limulus test kits. In addition, mesenteric lymph node, spleen, and liver samples were collected for bacterial cultures. Histological examinations of mesenteric lymph node, spleen, liver, jejunum, and ileum were performed 1 week post-injury. Locomotor function in the hind limb was evaluated using the Basso, Beattie, and Bresnahan score at pre-injury time point, as well as 24 hours, 72 hours, and 1 week post-injury. RESULTS: Endotoxemia and bacterial growth were identified at 24 hours post-injury in both groups. However, plasma endotoxin levels were significantly decreased in the methylprednisolone group compared with the saline group at 72 hours and 1 week post-injury (P 〈 0.05). Translocated bacteria mainly comprised Bacillus coli, Enterobacter cloacae, Escherichia coli, Proteus vulgaris, and Enterococcus faecalis following SCI combined with paraplegia. Histological changes were not as severe in the methylprednisolone group compared with the saline group 1 week after injury. Basso, Beattie, and Bresnahan scores were significantly better in the methylprednisolone group compared with the saline group 1 week after injury (P 〈 0.05). CONCLUSION: High-dose methylprednisolone inhibited bacterial translocation from the gut and endotoxin release in rats with SCI.展开更多
Objective:Early multiple organ dysfunction syndrome appears to be facilitated with bacterial transloca-tion in severely burn injury,yet the mechanisms of bacterial translocation remains in dispute.The aim of this stud...Objective:Early multiple organ dysfunction syndrome appears to be facilitated with bacterial transloca-tion in severely burn injury,yet the mechanisms of bacterial translocation remains in dispute.The aim of this studywas to investigate the potential role of intestinal bifidobacteria in the pathogenesis of gut-derived bacteria/endotoxintranslocation following burns and the effects of bifidohacterial supplement on gut barrier.Methods:Wistar rats wererandomly divided into burn group(Burn,n=60),sham burn g...展开更多
During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expendi...During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues(AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte's insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins' impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows' disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle.展开更多
Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity,...Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism.MethodsA high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC–MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator.ResultsThe expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC–MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin.ConclusionsAdipsin improves fatty acid β-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.展开更多
In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing a...In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing and strategies in mitigating Cd-stressed rice,the precise mechanisms underlying the health restoration of Cd-toxic rice and the assurance of grain safety remain elusive.This study explored Cd translocation and detoxification in the shoots of rice regulated by various Si fertilization regimes:Si(T)(all Si added before transplanting),Si(J)(all Si added at jointing),and Si(TJ)(half Si added both before transplanting and at jointing).The findings revealed that the regime of Si(TJ)was more beneficial to rice health and grain safety than Si(T)and Si(J).The osmotic regulators such as proline,soluble sugars,and soluble proteins were significantly boosted by Si(TJ)compared to other Si treatments,and which enhanced membrane integrity,balanced intracellular pH,and increased Cd tolerance of rice.Furthermore,Si(TJ)was more effective than Si(T)and Si(J)on the Cd sequestration in the cell wall,Cd bio-passivation,and the down-regulated expression of the Cd transport genes.The concentrations of Cd in the xylem and phloem treated with Si(TJ)were reduced significantly.Additionally,Si(TJ)facilitated much more Cd bound with the outer layer proteins of grains,and promoted Cd chelation and complexation by phytic acid,phenolics,and flavonoids.Overall,Si(TJ)outperformed Si(T)and Si(J)in harmonizing the phycological processes,inhibiting Cd translocation,and enhancing Cd detoxification in rice plant.Thereby the split Si application strategy offers potential for reducing Cd toxicity in rice grain.展开更多
Background:Nonalcoholic fatty liver disease(NAFLD)is an independent risk factor for severe acute pancreatitis(AP).The underlying mechanism remains unclear.We sought to determine how bacterial translocation and cholest...Background:Nonalcoholic fatty liver disease(NAFLD)is an independent risk factor for severe acute pancreatitis(AP).The underlying mechanism remains unclear.We sought to determine how bacterial translocation and cholesterol metabolism in the liver and pancreas affect the severity of AP in NAFLD mice.Methods:C57BL/6N mice were fed on a high-fat diet(HFD)to generate the NAFLD model,and mice in the control group were provided with a normal diet(ND).After being anesthetized with ketamine/xylazine,mice got a retrograde infusion of taurocholic acid sodium into the pancreatic duct to induce AP,and sham operation(SO)was used as control.Serum amylase and Schmidt’s pathological score system were used to evaluate AP severity.Bacterial loads,total cholesterol level,and cholesterol metabolic-associated molecules[low-density lipoprotein receptor(LDLR)and ATP-binding cassette transporter A1(ABCA1)]were analyzed in the liver and pancreas.Results:Compared with the ND-AP group,mice in the HFD-AP group had severer pancreatitis,manifested with higher serum amylase levels and higher AP pathologic scores,especially the inflammation and hemorrhage scores.Compared with the HFD-SO group and ND-AP group,bacterial loads in the liver and pancreas were significantly higher in the HFD-AP group.Mice in the HFD-AP group showed a decreased LDLR expression and an increased ABCA1 expression in the pancreas,although there was no significant difference in pancreas total cholesterol between the HFD-AP group and the ND-AP group.Conclusions:NAFLD aggravates AP via increasing bacterial translocation in the liver and pancreas and affecting pancreas cholesterol metabolism in mice.展开更多
Agropyron cristatum(2n=4x=28,PPPP)is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.Wheat–A.cristatum 2P alien translocation lines exhibit...Agropyron cristatum(2n=4x=28,PPPP)is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.Wheat–A.cristatum 2P alien translocation lines exhibit many desirable traits,such as small flag leaves,a high spikelet number and density,and a compact plant type.An agronomic trait evaluation and a genetic analysis were carried out on translocation lines and backcross populations of these lines carrying different translocation fragments.The results showed that a translocation fragment from 2PT-3(2PL)reduced the length of the flag leaves,while translocation fragments from 2PT-3(2PL)and 2PT-5(2PL(0.60–1.00))reduced the width of the flag leaves.A translocation fragment from 2PT-13(2PS(0.18–0.36))increased the length and area of the flag leaves.Translocation fragments from 2PT-3(2PL)and 2PT-8(2PL(0.86–1.00))increased the density of spikelets.Translocation fragments from 2PT-7(2PL(0.00–0.09)),2PT-8(2PL(0.86–1.00)),2PT-10(2PS),and 2PT-13(2PS(0.18–0.36))reduced plant height.This study provides a scientific basis for the effective utilization of wheat–A.cristatum translocation lines.展开更多
Objective:This is a retrospective observational cohort study.The objective of this retrospective observational cohort study was to evaluate the value of the combined serum D-lactic acid,diamine oxidase(DAO),and endoto...Objective:This is a retrospective observational cohort study.The objective of this retrospective observational cohort study was to evaluate the value of the combined serum D-lactic acid,diamine oxidase(DAO),and endotoxin levels to predict intestinal barrier impairment and gut-derived infection(GDI)in cancer patients.Methods:Cancer patients receiving chemotherapy or palliative care treatment at our hospital were enrolled in the study.The serum concentrations of DAO,D-lactic acid,and endotoxin were determined using the intestinal barrier function biochemical index analysis system.The patients'infection information came from the hospital's Medicom Prescription Automatic Screening System and themedical records.Three hundred fifty-three cancer patients were included in the study(53.8%female,73.7%cancer stage IV,27.8%had bowel obstruction).Results:The total incidence of GDI was 33.4%(118/353).The median length of hospital stay was 16 days for patients with GDI,compared with 7 days for patients without GDI(P<0.001).The media hospitalization costs were¥27,362.35 for patients with GDI compared with¥11,614.08 for patients without GDI(P<0.001).The serum concentrations of DAO,D-lactic acid,and endotoxin were significantly higher in patients with GDI.As malignant bowel obstruction(MBO)worsened,the concentrations of DAO,D-lactic acid,and endotoxin increased.Multivariate logistic regression models revealed that the DAO,endotoxin,IL-6,and C-reactive protein levels were significantly associated with an increased risk of GDI.In addition,we also found a fivefold increased risk of infection in patients withMBO compared with those without bowel obstruction(OR=6.210,P<0.001).All of the areas under the receiver operating characteristic curve(AUCs)for DAO,D-lactate,and endotoxin to predict GDI were<0.7(AUC=0.648,P<0.001;AUC=0.624,P<0.01;AUC=0.620,P<0.01,respectively).However,when the parameters were combined(DAO+D-lactate+endotoxin),the predictive power increased significantly(AUC=0.797,P<0.001).Moreover,combining these intestinal barrier indicators and the presence of MBO had better power to predict GDI than either alone(AUC=0.837,P<0.001).Conclusions:Combining the serum DAO,D-lactic acid,and endotoxin levels was a better predictor of GDI than any of the indicators alone,and combining these with the diagnosis of MBO could further improve the efficacy for predicting GDI.展开更多
Rye(Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits. The 1RS chromosome from the German c...Rye(Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits. The 1RS chromosome from the German cultivated rye variety Petkus is critical in wheat breeding. However, its weakened disease resistance highlights the need to identify new resources. In the present study, a novel derived line called D27 was developed from common wheat and Mexico Rye.Cytological observations characterized the karyotype of D27 as 2n=42=21 Ⅱ. Genomic in situ hybridization indicated that a pair of whole-arm translocated Mexico Rye chromosomes were inherited typically in the mitotic and meiosis stages of D27. Experiments using fluorescence in situ hybridization(FISH) and gliadin electrophoresis showed that D27 lacked wheat 1DS chromosomes. They were replaced by 1RS chromosomes of Mexico Rye, supported by wheat simple-sequence repeat markers, rye sequence characterized amplified region markers, and wheat 40K SNP array analysis.The wheat 1DS chromosomes could not be detected by molecular markers and wheat SNP array, but the presence of rye 1RS chromosomes was confirmed. Agronomic trait assessments indicated that D27 had a higher tiller number and enhanced stripe rust and powdery mildew resistance. In addition, dough properties analysis showed that replacing 1DS led to higher viscosity and lower dough elasticity in D27, which was beneficial for cake making. In conclusion, the novel cytogenetically stable common wheat–Mexico Rye T1DL·1RS translocation line D27 offers excellent potential as outstanding germplasm in wheat breeding programs focusing on disease resistance and yield improvement. Additionally,it can be valuable for researching the rye 1RS chromosome’s genetic diversity.展开更多
Flowering time is an important agronomic trait of Chinese cabbage with late flowering being a primary breeding objective.In our previous work,we obtained Chinese cabbage-cabbage translocation lines that contained seve...Flowering time is an important agronomic trait of Chinese cabbage with late flowering being a primary breeding objective.In our previous work,we obtained Chinese cabbage-cabbage translocation lines that contained several beneficial cabbage genes.Cabbage-specific molecular markers show that these genes were coming from chromosome C01 of cabbage.In this study,we investigated the inheritance of flowering time in a couple of translocation lines and analyzed the transmission rate of molecular markers in the offspring.Consequently,we obtained the late flowering Chinese cabbage-cabbage translocation line‘AT7–4’in which the flowering time was later than that of‘85–1’by about 7 days under 4-week vernalization.Based on previous studies of the genomes of Chinese cabbage and cabbage,we located the cabbage-specific molecular markers that were closely linked at the top of the chromosome A01 in the F2mapping population generated by self-crossing F1s derived from a cross between the translocation line‘AT7–4’and Chinese cabbage‘14–36’.Five flowering-related genes in the alien fragment were found by functional annotation and their molecular markers were developed.This study lays the foundation for the future improvement of Chinese cabbage varieties using A-C translocation lines.展开更多
Rye(Secale cereale)is a valuable gene donor for wheat improvement,especially for its resistance to diseases.Developing rye-derived resistance sources is important for wheat breeding.In the present study,two wheat-rye ...Rye(Secale cereale)is a valuable gene donor for wheat improvement,especially for its resistance to diseases.Developing rye-derived resistance sources is important for wheat breeding.In the present study,two wheat-rye derivatives,designated JS016 and JS110,were produced by crossing common wheat cultivar Yangmai 23 with Pakistani rye accession W2A.Using sequential genomic in situ hybridization(GISH)and multicolor fluorescence in situ hybridization(mc-FISH),JS016 and JS110 were identified as a T6BS.6RL translocation line and a T6BS.6BL6RL translocation line,respectively.Ten newly 6RL chromosome arm-specific markers were developed and used to confirm the 6RL translocation.The wheat 55K single-nucleotide polymorphism(SNP)array further verified the molecular cytogenetic identification results above and clarified their breakpoints at 430.9 and 523.0 Mb of chromosome 6B in JS016 and JS110,respectively.Resistance spectrum and allelism test demonstrated that JS016 and JS110 possessed novel powdery mildew resistance gene(s)that was derived from the 6RL translocation but differed from Pm20.Moreover,JS016 and JS110 had better agronomic traits than the previously reported 6RL translocation line carrying Pm20.To efficiently transfer and detect the 6RL translocation from JS016 and JS110,one 6RL-specific Kompetitive allele specific PCR(KASP)marker was developed and validated in high throughput marker-assisted selection(MAS).展开更多
Wide hybridization is a strategy for broadening the genetic basis of wheat. Because an efficient method for inducing wheat–alien chromosome translocations will allow producing useful germplasm, it is desirable to dis...Wide hybridization is a strategy for broadening the genetic basis of wheat. Because an efficient method for inducing wheat–alien chromosome translocations will allow producing useful germplasm, it is desirable to discover new genes that induce chromosomal variation. In this study, chromosome 5P from A.cristatum was shown to induce many types of chromosomal structural variation in a common wheat background, including nonhomoeologous chromosome translocations, as revealed by genomic in situ hybridization, fluorescence in situ hybridization, and DNA marker analysis. Aberrant meiosis was associated with chromosomal structural variation, and aberrant meiotic behavior was observed in wheat–A.cristatum 5P monosomic and disomic addition lines, suggesting that the effect of chromosome 5P was independent of the number of chromosome 5P copies. Chromosome 5P disturbed homologous chromosome pairing at pachytene stage in a common wheat background, resulting in a high frequency of univalent formation and reduced crossing over. Thirteen genes involved in DNA repair or chromatin remodeling, including RAD52-like and MSH6 genes, were differentially expressed(upregulated) in wheat–A. cristatum 5P addition lines according to transcriptome analysis, implicating chromosome 5P in the process of meiotic double-strand break repair. These findings provide a new, efficient tool for inducing wheat–alien chromosome translocations and producing new germplasm.展开更多
Objective To investigate the effects of lactulose on intestinal bacterial overgrowth (IBO), bacterial translocation (BT), intestinal transit and permeability in cirrhotic rats. Methods BT in all animals was assessed...Objective To investigate the effects of lactulose on intestinal bacterial overgrowth (IBO), bacterial translocation (BT), intestinal transit and permeability in cirrhotic rats. Methods BT in all animals was assessed by bacterial culture of mesenteric lymph node (MLN), liver and spleen, and IBO was assessed by a jejunal bacterial count of the specific organism. Intestinal permeability was determined by the 24-hour urinary 99mTc-diethylenetriamine pentaacetatic acid ( 99mTc-DTPA) excretion, and intestinal transit was determined by measuring the distribution of 51Cr in the intestine. Results BT and IBO were found in 48% and 80% of the cirrhotic rats, respectively, while not in the control rats. Cirrhotic rats with IBO had significantly higher levels of intestinal endotoxin higher rates of bacterial translocation, shorter intestinal transit time and higher intestinal permeability than those without IBO. It was also found that BT were closely associated with IBO and injury of the intestinal barrier. Compared with the placebo group, lactulose-treated rats had lower rates of BT and IBO, which were closely associated with increased intestinal transit and improved intestinal permeability by lactulose. Conclusions Our study indicate that endotoxin and bacterial translocation in cirrhotic rats may attribute to IBO and increased intestinal permeability. Lactulose that accelerates intestinal transit and improves intestinal permeability might be helpful in preventing intestinal bacterial and endotoxin translocation.展开更多
[Objective] The aim was to study the polymorphism of CMYA3 gene in the 148 pigs of hybrid offspring of 13/17 Robertsonian translocation pigs [2n = 37,rob (13;17)] intercrossing.[Method] PCR-RFLP method was adopted.[...[Objective] The aim was to study the polymorphism of CMYA3 gene in the 148 pigs of hybrid offspring of 13/17 Robertsonian translocation pigs [2n = 37,rob (13;17)] intercrossing.[Method] PCR-RFLP method was adopted.[Result] A 507 bp fragment of CMYA3 gene was obtained by PCR amplification,and then amplification product by using restriction nuclease Bsh1236Ⅰ was detected by agarose gel electrophoresis.As a result,both alleles (A and B) of the loci were found in the population.The frequencies of allele A and B were 0.699 and 0.301.The genotype frequencies of AA,AB and BB were 0.615,0.169 and 0.216.The frequencies of allele A and genotype AA were significantly higher than allele B and genotype BB in populations.[Conclusion] The study will provide theoretical basis for molecular breeding and marker-assisted selection of 13/17 Robertsonian translocation pigs.展开更多
The behavior of wheat-rye translocation chromosome and alien chromosome including Thinopyrum and Haynaldia chromosome at meiosis was investigated in two hybrids by fluorescence in situ hybridization (FISH). Misdivisio...The behavior of wheat-rye translocation chromosome and alien chromosome including Thinopyrum and Haynaldia chromosome at meiosis was investigated in two hybrids by fluorescence in situ hybridization (FISH). Misdivision of translocation chromosome at anaphase I and rye chromatin micronucleus at tetrad stage were observed, A plant with one normal 1BL/1RS translocation chromosome and one 1BL/1RS translocation chromosome deleted about 1/3 of rye chromosome arm in length was identified. One plant with wheat-Thinopyrum non-Robertson translocation chromosome was also detected in the F-2 population of Yi4212 x Yi4095. That could be the results of unequal misdivision of wheat-rye 1BL/1RS translocation chromosome and Thinopyrum chromosome during meiosis. No interaction between translocation chromosome and alien chromosome at meiosis was supported by the data of the distribution frequencies of translocation chromosome and Thinopyrum or Haynaldia chromosome in the progeny of two hybrids. The results may be useful to cultivate new germplasms with different length of rye 1R short arm and wheat-alien non-Robertson translocation tines under wheat background.展开更多
Summary: This study examined the postoperative plasma endotoxin level, plasma endotoxin inactivation capacity and clinical outcome after administration of an enteral diet supplemented with glutamine, arginine and ω-...Summary: This study examined the postoperative plasma endotoxin level, plasma endotoxin inactivation capacity and clinical outcome after administration of an enteral diet supplemented with glutamine, arginine and ω-3-fatty acid in patients undergoing gastrointestinal operations on an prospective, randomized and double-blind design. 40 patients undergoing gastrointestinal operations were randomized into two groups, with each having 20 patients. One group received standard enteral nutrition and the other was fed the formulation supplemented with glutamine, arginine and ω-3-fatty acid. The two groups were isonitrogenous. The infusion was started from day 1 after surgery and continued for 7 days. Blood samples were collected on the morning of day 1 before operation and on the morning of 1, 4 and 7 day(s) after operation and analyzed for plasma endotoxin level and endotoxin inactivation capacity (EIC). Our study found no differences between the two groups on plasma endotoxin level. After surgery a rapid reduction in plasma endotoxin inactivation capacity was observed in both groups, a significant recovery of the plasma endotoxin inactivation capacity was observed on morning of day 4 after surgery in the study group (0. 12±0.02 EU/mL and 0. 078±0. 022 EU/mL respectively. P〈0.01). Shortened hospital stay was observed in the experimental group (11.7±2.0 days in the control group and 10.6±1.2 days in the experimental group respectively, P=0.03). It is concluded that perioperative parenteral nutrition supplemented with glutamine, arginine and ω-3-fatty acid ameliorated postoperative immunodepression but without direct effect on endotoxemia.展开更多
基金Supported by Scientific and Technical Research Funds from Chinese PLA during the Eleventh Five-Year Plan Period,No. 2008G093National Natural Science Foundation of China,No. 30900715National Science and Technology Ministry,No. 2009BAI85B03
文摘AIM:To study whether over-starvation aggravates intestinal mucosal injury and promotes bacterial and endotoxin translocation in a high-altitude hypoxic environment.METHODS:Sprague-Dawley rats were exposed to hy-pobaric hypoxia at a simulated altitude of 7000 m for 72 h.Lanthanum nitrate was used as a tracer to detect intestinal injury.Epithelial apoptosis was observed with terminal deoxynucleotidyl transferase dUTP nick end labeling staining.Serum levels of diamino oxidase(DAO),malondialdehyde(MDA),glutamine(Gln),superoxide dismutase(SOD) and endotoxin were measured in intestinal mucosa.Bacterial translocation was detected in blood culture and intestinal homogenates.In addition,rats were given Gln intragastrically to observe its protective effect on intestinal injury.RESULTS:Apoptotic epithelial cells,exfoliated villi and inflammatory cells in intestine were increased with edema in the lamina propria accompanying effusion of red blood cells.Lanthanum particles were found in the intercellular space and intracellular compartment.Bacterial translocation to mesenteric lymph nodes(MLN) and spleen was evident.The serum endotoxin,DAO and MDA levels were significantly higher while the serum SOD,DAO and Gln levels were lower in intestine(P< 0.05).The bacterial translocation number was lower in the high altitude hypoxic group than in the high altitude starvation group(0.47±0.83 vs 2.38±1.45,P<0.05).The bacterial translocation was found in each organ,especially in MLN and spleen but not in peripheral blood.The bacterial and endotoxin translocations were both markedly improved in rats after treatment with Gln.CONCLUSION:High-altitude hypoxia and starvation cause severe intestinal mucosal injury and increase bacterial and endotoxin translocation,which can be treated with Gln.
文摘Objective: To set up a swine model of severe acute pancreatitis(SAP) and to observe its relationship with the gut-originated bacteria/endotoxin translocation. Methods: Forty pigs weighing 17-22 kg were randomly diyided into SAP group (n=34) and sham-SAP group (n=6). By injecting 1 ml/kg of combined solution of 5% sodium taurocholate and 8 000-10 000 benzoyl arginine ethyl ester(BAEE) units trypsin per milliliter into pancreas via pancreatic duct, SAP was induced under anesthesia. Endotoxin samples from vena cava were determined by chromogenic limulus amebocyte lysate (LAL) technique. Both portal and central vena blood samples were collected before and 72 h after the induction of SAP and cultured for both aerobic and anaerobic bacterial growth. Animals were sacrificed at the end of experiments by injecting 20 ml of 10% KCl intravenously and tissue specimens of mesenteriolum and mesocolon lymph nodes, lung, pulmonary portal lymph nods and pancreas were taken immediately after animal death, and homogenized for bacteriological studies. Results: Systemic plasma endotoxin levels increased rapidly 6 h post induction of SAP(PIS) with a peak at 48 h PIS (P〈0.01). The magnitude of bacterial translocation in both portal and systemic blood and remote systemic organs as well were recovered PIS. Conclusion: (1) A swine model of SAP was established; (2)The early endotoxemia PIS seamed probable originated from gut endotoxin translocation; (3)The magnitude of bacterial translocation in both portal and systemic blood and the remote systemic organs as well were recovered at 72h PIS.
基金the China Postdoctoral Sciences Foundation No C.P.S.F 1996.2~#
文摘The main reason for the death of the patient with acute hemorrhage necrosis pancreatitis (AHNP) is pancreatic infection and multi-organ failure caused by endotoxemia and intestinal bacterial translocation[1-7]. However, the pathogenesis of endotoxemia and intestinal bacterial translocation remains a question[8-10]; moreover, no effective method of prevention and cure for it has been found till now[11 -15] In the present study, we infused low dose dopamine and low molecular weight dextran through the catheters to abdominal aorta and portal vein, and observed its influence on the endotoxin concentration in plasma and the rate of translocation of intestinal bacteria in AHNP rats.
文摘Extrahepatic biliary obstruction promotes intestinal translocation of bacteria and endotoxin and this process is an important cause of morbidity and mortality in patients with jaundice. This study was undertaken to investigate the effect and mechanism of recombinant human growth hormone (rhGH) and to alleviate intestinal translocation of bacteria and endotoxin in murine obstructive jaundice. METHODS:A group of 42 Wistar rats were divided into 3 groups:sham operation (SO), bile duct ligation (BDL), and BDL and rhGH treatment (rhGH). By the end of the experiment,on day 7, the animals were killed, and their liver function and serum endotoxin were measured, bacterial cultures of the liver, kidney and mesenchymal lymph were made. Terminal ileum mucosa was observed under an electron microscope. RESULTS:Liver function was improved more significantly in the rhGH group than in the BDL group. The value of endotoxin in the rhGH group was 0.38±0.03 EU/ml, significantly lower than that in the BDL group (0.65±0.04 EU/ml, P【0.01), and similar to that in the SO group (0.30±0.02 EU/ml, P】0.05). The rate of bacteria translocation in the liver, kidney and mesenteric lymph was much higher in the BDL group than in other two groups. The rate of bacteria translocation in mesenteric lymph was 64.29%,significantly higher than that in the SO group and the rhGH group (P【0.05). There was no significant difference in bacteria translocation rate between the SO group and the rhGH group (P】0.05). Under an electron microscope , ileum mucosa epithelial cells in the BDL group were necrotic, and organelle were markedly metamorphic. In the rhGH group, ultrastructural changes were less evident or similar to those in the SO group. CONCLUSION:rhGH has significant protective effects on intestinal mucosa barrier in obstructive jaundice, and reduces intestinal translocation of bacteria and endotoxin.
基金a Grant from the Research Fund of Department of Health of Jiangxi Province,No.20061072
文摘BACKGROUND: Previous studies have shown that autonomic dysfunction results in gastrointestinal motility disorders and ultimately results in bacterial translocation following acute spinal cord injury (SCI). Intensive methylprednisolone dosing improves neurological recovery in SCI patients. However, it remains uncertain whether high-dose methylprednisolone inhibits bacterial translocation and endotoxin release following acute SCI. OBJECTIVE: To investigate the inhibitory effect of methylprednisolone on bacterial translocation and endotoxin release from the gut in paraplegic rats. DESIGN, TIME AND SETTING: The randomized, controlled study was performed at the Orthopedic Lab, First Affiliated Hospital, Nanchang University, China, from April to December 2008. MATERIALS: Methylprednisolone (Pfizer, USA), automatic microbial identification instrument ATB Expression and reagent ID 32 system (BioMerieux, France), Limulus test kit (ACC, USA), and optical microscope (Olympus, Japan) were used in this study. METHODS: A paraplegia model was established following SCI in 48 Wistar rats, aged 7 weeks. The rats were equally and randomly assigned to saline and methylprednisolone groups. Immediately post-injury, the methylprednisolone group was administered 30 mg/kg methylprednisolone via caudal intravenous infusion, followed by a 23-hour infusion of 5.4 mg/kg per hour. The saline group received an equal volume of saline as placebo. MAIN OUTCOME MEASURES: At 24 hours, 72 hours, and 1 week after SCI, blood samples were collected for bacterial cultures, and bacteria and endotoxin were identified using ATB Expression and Limulus test kits. In addition, mesenteric lymph node, spleen, and liver samples were collected for bacterial cultures. Histological examinations of mesenteric lymph node, spleen, liver, jejunum, and ileum were performed 1 week post-injury. Locomotor function in the hind limb was evaluated using the Basso, Beattie, and Bresnahan score at pre-injury time point, as well as 24 hours, 72 hours, and 1 week post-injury. RESULTS: Endotoxemia and bacterial growth were identified at 24 hours post-injury in both groups. However, plasma endotoxin levels were significantly decreased in the methylprednisolone group compared with the saline group at 72 hours and 1 week post-injury (P 〈 0.05). Translocated bacteria mainly comprised Bacillus coli, Enterobacter cloacae, Escherichia coli, Proteus vulgaris, and Enterococcus faecalis following SCI combined with paraplegia. Histological changes were not as severe in the methylprednisolone group compared with the saline group 1 week after injury. Basso, Beattie, and Bresnahan scores were significantly better in the methylprednisolone group compared with the saline group 1 week after injury (P 〈 0.05). CONCLUSION: High-dose methylprednisolone inhibited bacterial translocation from the gut and endotoxin release in rats with SCI.
基金This work was supported in part by grants from the National Key Program for Fundamental Research and Development(Grant No.G1999054203)the National Natural Science Outstanding Youth Foundation of China(Grant No.30125020).
文摘Objective:Early multiple organ dysfunction syndrome appears to be facilitated with bacterial transloca-tion in severely burn injury,yet the mechanisms of bacterial translocation remains in dispute.The aim of this studywas to investigate the potential role of intestinal bifidobacteria in the pathogenesis of gut-derived bacteria/endotoxintranslocation following burns and the effects of bifidohacterial supplement on gut barrier.Methods:Wistar rats wererandomly divided into burn group(Burn,n=60),sham burn g...
基金supported by USDA-National Institute of Food and Agriculture (Washington, DC) competitive grants 2019-67015-29443 and 202167015-34563Department of Large Animal Clinical Sciences (East Lansing, MI), Office of the Associate Dean for Research and Graduate Studies of the College of Veterinary Medicine (East Lansing, MI)+2 种基金Michigan State University College of Veterinary Medicine Endowed Research Funds 2020 (East Lansing, MIRobert and Janet Hafner Fund for Animal Health)the Michigan Alliance for Animal Agriculture (East Lansing, awards AA-21-154, AA-22-055)。
文摘During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues(AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte's insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins' impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows' disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle.
基金National Natural Science Foundation of China(82070398,81922008)Key Basic Research Projects of Basic Strengthening Plan(2022-JCJQ-ZD-095-00)Top Young Talents Special Support Program in Shaanxi Province(2020).
文摘Background Diabetic cardiomyopathy (DCM) causes the myocardium to rely on fatty acid β-oxidation for energy. The accumulation of intracellular lipids and fatty acids in the myocardium usually results in lipotoxicity, which impairs myocardial function. Adipsin may play an important protective role in the pathogenesis of DCM. The aim of this study is to investigate the regulatory effect of Adipsin on DCM lipotoxicity and its molecular mechanism.MethodsA high-fat diet (HFD)-induced type 2 diabetes mellitus model was constructed in mice with adipose tissue-specific overexpression of Adipsin (Adipsin-Tg). Liquid chromatography-tandem mass spectrometry (LC–MS/MS), glutathione-S-transferase (GST) pull-down technique, Co-immunoprecipitation (Co-IP) and immunofluorescence colocalization analyses were used to investigate the molecules which can directly interact with Adipsin. The immunocolloidal gold method was also used to detect the interaction between Adipsin and its downstream modulator.ResultsThe expression of Adipsin was significantly downregulated in the HFD-induced DCM model (P < 0.05). Adipose tissue-specific overexpression of Adipsin significantly improved cardiac function and alleviated cardiac remodeling in DCM (P < 0.05). Adipsin overexpression also alleviated mitochondrial oxidative phosphorylation function in diabetic stress (P < 0.05). LC–MS/MS analysis, GST pull-down technique and Co-IP studies revealed that interleukin-1 receptor-associated kinase-like 2 (Irak2) was a downstream regulator of Adipsin. Immunofluorescence analysis also revealed that Adipsin was co-localized with Irak2 in cardiomyocytes. Immunocolloidal gold electron microscopy and Western blotting analysis indicated that Adipsin inhibited the mitochondrial translocation of Irak2 in DCM, thus dampening the interaction between Irak2 and prohibitin (Phb)-optic atrophy protein 1 (Opa1) on mitochondria and improving the structural integrity and function of mitochondria (P < 0.05). Interestingly, in the presence of Irak2 knockdown, Adipsin overexpression did not further alleviate myocardial mitochondrial destruction and cardiac dysfunction, suggesting a downstream role of Irak2 in Adipsin-induced responses (P < 0.05). Consistent with these findings, overexpression of Adipsin after Irak2 knockdown did not further reduce the accumulation of lipids and their metabolites in the cardiac myocardium, nor did it enhance the oxidation capacity of cardiomyocytes expose to palmitate (PA) (P < 0.05). These results indicated that Irak2 may be a downstream regulator of Adipsin.ConclusionsAdipsin improves fatty acid β-oxidation and alleviates mitochondrial injury in DCM. The mechanism is related to Irak2 interaction and inhibition of Irak2 mitochondrial translocation.
基金supported by the Science and Technology Planning Program of Guangdong Province(2013B020310010 and 2019B030301007)the Open Foundation of Key Laboratory for Agricultural Environment,Ministry of Agriculture and Rural Affairs,P.R.China.
文摘In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing and strategies in mitigating Cd-stressed rice,the precise mechanisms underlying the health restoration of Cd-toxic rice and the assurance of grain safety remain elusive.This study explored Cd translocation and detoxification in the shoots of rice regulated by various Si fertilization regimes:Si(T)(all Si added before transplanting),Si(J)(all Si added at jointing),and Si(TJ)(half Si added both before transplanting and at jointing).The findings revealed that the regime of Si(TJ)was more beneficial to rice health and grain safety than Si(T)and Si(J).The osmotic regulators such as proline,soluble sugars,and soluble proteins were significantly boosted by Si(TJ)compared to other Si treatments,and which enhanced membrane integrity,balanced intracellular pH,and increased Cd tolerance of rice.Furthermore,Si(TJ)was more effective than Si(T)and Si(J)on the Cd sequestration in the cell wall,Cd bio-passivation,and the down-regulated expression of the Cd transport genes.The concentrations of Cd in the xylem and phloem treated with Si(TJ)were reduced significantly.Additionally,Si(TJ)facilitated much more Cd bound with the outer layer proteins of grains,and promoted Cd chelation and complexation by phytic acid,phenolics,and flavonoids.Overall,Si(TJ)outperformed Si(T)and Si(J)in harmonizing the phycological processes,inhibiting Cd translocation,and enhancing Cd detoxification in rice plant.Thereby the split Si application strategy offers potential for reducing Cd toxicity in rice grain.
基金This study was supported by grants from the National Nat-ural Science Foundation of China(82070539 and 81873549)the Youth Innovation Foundation of Aerospace Center Hospital(2021QN02).
文摘Background:Nonalcoholic fatty liver disease(NAFLD)is an independent risk factor for severe acute pancreatitis(AP).The underlying mechanism remains unclear.We sought to determine how bacterial translocation and cholesterol metabolism in the liver and pancreas affect the severity of AP in NAFLD mice.Methods:C57BL/6N mice were fed on a high-fat diet(HFD)to generate the NAFLD model,and mice in the control group were provided with a normal diet(ND).After being anesthetized with ketamine/xylazine,mice got a retrograde infusion of taurocholic acid sodium into the pancreatic duct to induce AP,and sham operation(SO)was used as control.Serum amylase and Schmidt’s pathological score system were used to evaluate AP severity.Bacterial loads,total cholesterol level,and cholesterol metabolic-associated molecules[low-density lipoprotein receptor(LDLR)and ATP-binding cassette transporter A1(ABCA1)]were analyzed in the liver and pancreas.Results:Compared with the ND-AP group,mice in the HFD-AP group had severer pancreatitis,manifested with higher serum amylase levels and higher AP pathologic scores,especially the inflammation and hemorrhage scores.Compared with the HFD-SO group and ND-AP group,bacterial loads in the liver and pancreas were significantly higher in the HFD-AP group.Mice in the HFD-AP group showed a decreased LDLR expression and an increased ABCA1 expression in the pancreas,although there was no significant difference in pancreas total cholesterol between the HFD-AP group and the ND-AP group.Conclusions:NAFLD aggravates AP via increasing bacterial translocation in the liver and pancreas and affecting pancreas cholesterol metabolism in mice.
基金supported by grants from the National Natural Science Foundation of China(32272083)the National Key Research and Development Program of China(2016YFD0100102).
文摘Agropyron cristatum(2n=4x=28,PPPP)is a wild relative of common wheat which contains a large number of desirable genes that can be exploited for wheat improvement.Wheat–A.cristatum 2P alien translocation lines exhibit many desirable traits,such as small flag leaves,a high spikelet number and density,and a compact plant type.An agronomic trait evaluation and a genetic analysis were carried out on translocation lines and backcross populations of these lines carrying different translocation fragments.The results showed that a translocation fragment from 2PT-3(2PL)reduced the length of the flag leaves,while translocation fragments from 2PT-3(2PL)and 2PT-5(2PL(0.60–1.00))reduced the width of the flag leaves.A translocation fragment from 2PT-13(2PS(0.18–0.36))increased the length and area of the flag leaves.Translocation fragments from 2PT-3(2PL)and 2PT-8(2PL(0.86–1.00))increased the density of spikelets.Translocation fragments from 2PT-7(2PL(0.00–0.09)),2PT-8(2PL(0.86–1.00)),2PT-10(2PS),and 2PT-13(2PS(0.18–0.36))reduced plant height.This study provides a scientific basis for the effective utilization of wheat–A.cristatum translocation lines.
文摘Objective:This is a retrospective observational cohort study.The objective of this retrospective observational cohort study was to evaluate the value of the combined serum D-lactic acid,diamine oxidase(DAO),and endotoxin levels to predict intestinal barrier impairment and gut-derived infection(GDI)in cancer patients.Methods:Cancer patients receiving chemotherapy or palliative care treatment at our hospital were enrolled in the study.The serum concentrations of DAO,D-lactic acid,and endotoxin were determined using the intestinal barrier function biochemical index analysis system.The patients'infection information came from the hospital's Medicom Prescription Automatic Screening System and themedical records.Three hundred fifty-three cancer patients were included in the study(53.8%female,73.7%cancer stage IV,27.8%had bowel obstruction).Results:The total incidence of GDI was 33.4%(118/353).The median length of hospital stay was 16 days for patients with GDI,compared with 7 days for patients without GDI(P<0.001).The media hospitalization costs were¥27,362.35 for patients with GDI compared with¥11,614.08 for patients without GDI(P<0.001).The serum concentrations of DAO,D-lactic acid,and endotoxin were significantly higher in patients with GDI.As malignant bowel obstruction(MBO)worsened,the concentrations of DAO,D-lactic acid,and endotoxin increased.Multivariate logistic regression models revealed that the DAO,endotoxin,IL-6,and C-reactive protein levels were significantly associated with an increased risk of GDI.In addition,we also found a fivefold increased risk of infection in patients withMBO compared with those without bowel obstruction(OR=6.210,P<0.001).All of the areas under the receiver operating characteristic curve(AUCs)for DAO,D-lactate,and endotoxin to predict GDI were<0.7(AUC=0.648,P<0.001;AUC=0.624,P<0.01;AUC=0.620,P<0.01,respectively).However,when the parameters were combined(DAO+D-lactate+endotoxin),the predictive power increased significantly(AUC=0.797,P<0.001).Moreover,combining these intestinal barrier indicators and the presence of MBO had better power to predict GDI than either alone(AUC=0.837,P<0.001).Conclusions:Combining the serum DAO,D-lactic acid,and endotoxin levels was a better predictor of GDI than any of the indicators alone,and combining these with the diagnosis of MBO could further improve the efficacy for predicting GDI.
基金supported by the National Natural Science Foundation of China (31771785)the Key Research and Development Program of Shaanxi, China (2018ZDXM-NY-006)。
文摘Rye(Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits. The 1RS chromosome from the German cultivated rye variety Petkus is critical in wheat breeding. However, its weakened disease resistance highlights the need to identify new resources. In the present study, a novel derived line called D27 was developed from common wheat and Mexico Rye.Cytological observations characterized the karyotype of D27 as 2n=42=21 Ⅱ. Genomic in situ hybridization indicated that a pair of whole-arm translocated Mexico Rye chromosomes were inherited typically in the mitotic and meiosis stages of D27. Experiments using fluorescence in situ hybridization(FISH) and gliadin electrophoresis showed that D27 lacked wheat 1DS chromosomes. They were replaced by 1RS chromosomes of Mexico Rye, supported by wheat simple-sequence repeat markers, rye sequence characterized amplified region markers, and wheat 40K SNP array analysis.The wheat 1DS chromosomes could not be detected by molecular markers and wheat SNP array, but the presence of rye 1RS chromosomes was confirmed. Agronomic trait assessments indicated that D27 had a higher tiller number and enhanced stripe rust and powdery mildew resistance. In addition, dough properties analysis showed that replacing 1DS led to higher viscosity and lower dough elasticity in D27, which was beneficial for cake making. In conclusion, the novel cytogenetically stable common wheat–Mexico Rye T1DL·1RS translocation line D27 offers excellent potential as outstanding germplasm in wheat breeding programs focusing on disease resistance and yield improvement. Additionally,it can be valuable for researching the rye 1RS chromosome’s genetic diversity.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant Nos.31930098,31772324)Hebei Provincial Natural Science Fund for Distinguished Young(Grant No.C2020204063)+6 种基金Natural Science Foundation and basic research project in Hebei Province(Grant No.18966925D)the Innovative Research Group Project of Hebei Natural Science Foundation(Grant No.C2020204111)the Agricultural Science and Technology Innovation Program of CAAS(Grant No.CAASXTCX2019025)the National Natural Science Foundation of China(Grant No.31672151)the Science and Technology Support Program of Hebei(Grant No.16226304D-2)Science and Technology Research Project of Universities in Hebei Province(BJ2019020)the International Science and Technology Cooperation base Special Project of Hebei(Grant No.20592901D)。
文摘Flowering time is an important agronomic trait of Chinese cabbage with late flowering being a primary breeding objective.In our previous work,we obtained Chinese cabbage-cabbage translocation lines that contained several beneficial cabbage genes.Cabbage-specific molecular markers show that these genes were coming from chromosome C01 of cabbage.In this study,we investigated the inheritance of flowering time in a couple of translocation lines and analyzed the transmission rate of molecular markers in the offspring.Consequently,we obtained the late flowering Chinese cabbage-cabbage translocation line‘AT7–4’in which the flowering time was later than that of‘85–1’by about 7 days under 4-week vernalization.Based on previous studies of the genomes of Chinese cabbage and cabbage,we located the cabbage-specific molecular markers that were closely linked at the top of the chromosome A01 in the F2mapping population generated by self-crossing F1s derived from a cross between the translocation line‘AT7–4’and Chinese cabbage‘14–36’.Five flowering-related genes in the alien fragment were found by functional annotation and their molecular markers were developed.This study lays the foundation for the future improvement of Chinese cabbage varieties using A-C translocation lines.
基金supported by the National Natural Science Foundation of China(32171990 and 32072053)Key Research and Development Program of Zhenjiang(NY2021001)+4 种基金State Key Laboratory of Plant Cell and Chromosome Engineering(PCCE-KF-2021-05 and PCCE-KF-2022-07)State Key Laboratory of Crop Biology in Shandong Agricultural University(2021KF01)Natural Science Foundation of the Jiangsu Higher Education institutions of China(21KJB210004)Open Project Funding of State Key Laboratory of Crop Stress Adaptation and Improvement(CX1130A0920014)Key Research and Development Program of Shandong Province(2020CXGC010805).
文摘Rye(Secale cereale)is a valuable gene donor for wheat improvement,especially for its resistance to diseases.Developing rye-derived resistance sources is important for wheat breeding.In the present study,two wheat-rye derivatives,designated JS016 and JS110,were produced by crossing common wheat cultivar Yangmai 23 with Pakistani rye accession W2A.Using sequential genomic in situ hybridization(GISH)and multicolor fluorescence in situ hybridization(mc-FISH),JS016 and JS110 were identified as a T6BS.6RL translocation line and a T6BS.6BL6RL translocation line,respectively.Ten newly 6RL chromosome arm-specific markers were developed and used to confirm the 6RL translocation.The wheat 55K single-nucleotide polymorphism(SNP)array further verified the molecular cytogenetic identification results above and clarified their breakpoints at 430.9 and 523.0 Mb of chromosome 6B in JS016 and JS110,respectively.Resistance spectrum and allelism test demonstrated that JS016 and JS110 possessed novel powdery mildew resistance gene(s)that was derived from the 6RL translocation but differed from Pm20.Moreover,JS016 and JS110 had better agronomic traits than the previously reported 6RL translocation line carrying Pm20.To efficiently transfer and detect the 6RL translocation from JS016 and JS110,one 6RL-specific Kompetitive allele specific PCR(KASP)marker was developed and validated in high throughput marker-assisted selection(MAS).
基金financially supported by the National Key Research and Development Program of China (2021YFD1200605)the National Natural Science Foundation of China (32171961)。
文摘Wide hybridization is a strategy for broadening the genetic basis of wheat. Because an efficient method for inducing wheat–alien chromosome translocations will allow producing useful germplasm, it is desirable to discover new genes that induce chromosomal variation. In this study, chromosome 5P from A.cristatum was shown to induce many types of chromosomal structural variation in a common wheat background, including nonhomoeologous chromosome translocations, as revealed by genomic in situ hybridization, fluorescence in situ hybridization, and DNA marker analysis. Aberrant meiosis was associated with chromosomal structural variation, and aberrant meiotic behavior was observed in wheat–A.cristatum 5P monosomic and disomic addition lines, suggesting that the effect of chromosome 5P was independent of the number of chromosome 5P copies. Chromosome 5P disturbed homologous chromosome pairing at pachytene stage in a common wheat background, resulting in a high frequency of univalent formation and reduced crossing over. Thirteen genes involved in DNA repair or chromatin remodeling, including RAD52-like and MSH6 genes, were differentially expressed(upregulated) in wheat–A. cristatum 5P addition lines according to transcriptome analysis, implicating chromosome 5P in the process of meiotic double-strand break repair. These findings provide a new, efficient tool for inducing wheat–alien chromosome translocations and producing new germplasm.
基金hisstudywaspartiallysupportedbytheNationalNaturalScienceFundationofChina (No .30 0 70 340 )
文摘Objective To investigate the effects of lactulose on intestinal bacterial overgrowth (IBO), bacterial translocation (BT), intestinal transit and permeability in cirrhotic rats. Methods BT in all animals was assessed by bacterial culture of mesenteric lymph node (MLN), liver and spleen, and IBO was assessed by a jejunal bacterial count of the specific organism. Intestinal permeability was determined by the 24-hour urinary 99mTc-diethylenetriamine pentaacetatic acid ( 99mTc-DTPA) excretion, and intestinal transit was determined by measuring the distribution of 51Cr in the intestine. Results BT and IBO were found in 48% and 80% of the cirrhotic rats, respectively, while not in the control rats. Cirrhotic rats with IBO had significantly higher levels of intestinal endotoxin higher rates of bacterial translocation, shorter intestinal transit time and higher intestinal permeability than those without IBO. It was also found that BT were closely associated with IBO and injury of the intestinal barrier. Compared with the placebo group, lactulose-treated rats had lower rates of BT and IBO, which were closely associated with increased intestinal transit and improved intestinal permeability by lactulose. Conclusions Our study indicate that endotoxin and bacterial translocation in cirrhotic rats may attribute to IBO and increased intestinal permeability. Lactulose that accelerates intestinal transit and improves intestinal permeability might be helpful in preventing intestinal bacterial and endotoxin translocation.
基金Supported by Major Specialized Subject of Transgenic Organism New Variety Breeding(20082X08006-003)National Natural Science Foundation of China(30871778 )Construction Engineering Special Fund for Mountain Tai Scholars of Shandong Province~~
文摘[Objective] The aim was to study the polymorphism of CMYA3 gene in the 148 pigs of hybrid offspring of 13/17 Robertsonian translocation pigs [2n = 37,rob (13;17)] intercrossing.[Method] PCR-RFLP method was adopted.[Result] A 507 bp fragment of CMYA3 gene was obtained by PCR amplification,and then amplification product by using restriction nuclease Bsh1236Ⅰ was detected by agarose gel electrophoresis.As a result,both alleles (A and B) of the loci were found in the population.The frequencies of allele A and B were 0.699 and 0.301.The genotype frequencies of AA,AB and BB were 0.615,0.169 and 0.216.The frequencies of allele A and genotype AA were significantly higher than allele B and genotype BB in populations.[Conclusion] The study will provide theoretical basis for molecular breeding and marker-assisted selection of 13/17 Robertsonian translocation pigs.
文摘The behavior of wheat-rye translocation chromosome and alien chromosome including Thinopyrum and Haynaldia chromosome at meiosis was investigated in two hybrids by fluorescence in situ hybridization (FISH). Misdivision of translocation chromosome at anaphase I and rye chromatin micronucleus at tetrad stage were observed, A plant with one normal 1BL/1RS translocation chromosome and one 1BL/1RS translocation chromosome deleted about 1/3 of rye chromosome arm in length was identified. One plant with wheat-Thinopyrum non-Robertson translocation chromosome was also detected in the F-2 population of Yi4212 x Yi4095. That could be the results of unequal misdivision of wheat-rye 1BL/1RS translocation chromosome and Thinopyrum chromosome during meiosis. No interaction between translocation chromosome and alien chromosome at meiosis was supported by the data of the distribution frequencies of translocation chromosome and Thinopyrum or Haynaldia chromosome in the progeny of two hybrids. The results may be useful to cultivate new germplasms with different length of rye 1R short arm and wheat-alien non-Robertson translocation tines under wheat background.
文摘Summary: This study examined the postoperative plasma endotoxin level, plasma endotoxin inactivation capacity and clinical outcome after administration of an enteral diet supplemented with glutamine, arginine and ω-3-fatty acid in patients undergoing gastrointestinal operations on an prospective, randomized and double-blind design. 40 patients undergoing gastrointestinal operations were randomized into two groups, with each having 20 patients. One group received standard enteral nutrition and the other was fed the formulation supplemented with glutamine, arginine and ω-3-fatty acid. The two groups were isonitrogenous. The infusion was started from day 1 after surgery and continued for 7 days. Blood samples were collected on the morning of day 1 before operation and on the morning of 1, 4 and 7 day(s) after operation and analyzed for plasma endotoxin level and endotoxin inactivation capacity (EIC). Our study found no differences between the two groups on plasma endotoxin level. After surgery a rapid reduction in plasma endotoxin inactivation capacity was observed in both groups, a significant recovery of the plasma endotoxin inactivation capacity was observed on morning of day 4 after surgery in the study group (0. 12±0.02 EU/mL and 0. 078±0. 022 EU/mL respectively. P〈0.01). Shortened hospital stay was observed in the experimental group (11.7±2.0 days in the control group and 10.6±1.2 days in the experimental group respectively, P=0.03). It is concluded that perioperative parenteral nutrition supplemented with glutamine, arginine and ω-3-fatty acid ameliorated postoperative immunodepression but without direct effect on endotoxemia.