In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B...In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.展开更多
As the application of energy-absorption structure reaches an unprecedented scale in both academia and industry, a reflection upon the state-of-the-art developments in the crashworthiness design and structural optimiza...As the application of energy-absorption structure reaches an unprecedented scale in both academia and industry, a reflection upon the state-of-the-art developments in the crashworthiness design and structural optimization, becomes vital for successfully shaping the future energy-absorption structure. Physical impacting test and numerical simulation are the main methods to study the crashworthiness of railway vehicles at present. The end collision deformation area of the train can generally be divided into two kinds of structural design forms: integral absorbing structure design form and specific energy absorbing structure design form, and different energy-absorption structures introduced in this article can be equipped on different railway vehicles, so as to meet the balance of crashworthiness and economy. In pursuit of improving the capacity of energy dissipation in energy-absorption structures, studies are increasingly investigating multistage energy absorption systems, searching breakthrough when the energy dissipation capacity of the energy-absorption structure reaches its limit. In order to minimize injuries, a self-protective posture for occupants is also studied. Despite the abundance of energy-absorption structure research methods to-date, the problems of analysis and prediction during impact are still scarce, which is constituting one of many key challenges for the future.展开更多
Auxetic honeycomb structures are promising metamaterials with outstanding mechanical properties,and can be potentially used in energy absorption applications.In this study,a novel modified re-entrant hybrid auxetic me...Auxetic honeycomb structures are promising metamaterials with outstanding mechanical properties,and can be potentially used in energy absorption applications.In this study,a novel modified re-entrant hybrid auxetic metamaterial inspired by Islamic motif art is designed by integrating four-pointed double re-entrant motifs with symmetric semi-hexagonal unit cells to achieve a high energy absorption capacity(EAC).Theoretical analyses and numerical simulations are performed to examine the dynamic crushing behavior of the four-pointed double re-entrant combined structure(FDRCS).The developed finite element models(FEMs)are validated by the experiments under quasi-static compression.The deformation mode and stress-strain curves are further studied under low,medium,and high crushing velocities.The theoretically predicted plateau stress of the FDRCS under different crushing velocities is consistent with the numerical simulation results.The crushing stress and the EAC of the FDRCS are influenced by the geometric parameters and crushing velocities.The FDRCS exhibits a negative Poisson's ratio(NPR),owing to the four-point re-entrant structure(RES).Moreover,the specific energy absorption(SEA)of these structures is higher than that of nonauxetic hexagonal and auxetic re-entrant structures,owing to the generation of more plastic hinges that dissipate more energy during dynamic crushing.展开更多
Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the...Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design.展开更多
基金Project(50175110) supported by the National Natural Science Foundation of ChinaProject(2009bsxt019) supported by the Graduate Degree Thesis Innovation Foundation of Central South University, China
文摘In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN.
基金Project(2018YFB1201701-08)supported by the National Key R&D Program of ChinaProject(ZLXD2017002)supported by the Strategic Leading Science and Technology Project of Central South University,ChinaProject(2019zzts145)supported by the Fundamental Research Funds for the Central Universities,China。
文摘As the application of energy-absorption structure reaches an unprecedented scale in both academia and industry, a reflection upon the state-of-the-art developments in the crashworthiness design and structural optimization, becomes vital for successfully shaping the future energy-absorption structure. Physical impacting test and numerical simulation are the main methods to study the crashworthiness of railway vehicles at present. The end collision deformation area of the train can generally be divided into two kinds of structural design forms: integral absorbing structure design form and specific energy absorbing structure design form, and different energy-absorption structures introduced in this article can be equipped on different railway vehicles, so as to meet the balance of crashworthiness and economy. In pursuit of improving the capacity of energy dissipation in energy-absorption structures, studies are increasingly investigating multistage energy absorption systems, searching breakthrough when the energy dissipation capacity of the energy-absorption structure reaches its limit. In order to minimize injuries, a self-protective posture for occupants is also studied. Despite the abundance of energy-absorption structure research methods to-date, the problems of analysis and prediction during impact are still scarce, which is constituting one of many key challenges for the future.
基金the National Natural Science Foundation of China(Nos.12102274,1207220311872253)+1 种基金the Natural Science Foundation of Hebei Province of China(No.A2022210005)the Central Guidance on Local Science and Technology Development Fund of Hebei Province of China(No.226Z4901G)。
文摘Auxetic honeycomb structures are promising metamaterials with outstanding mechanical properties,and can be potentially used in energy absorption applications.In this study,a novel modified re-entrant hybrid auxetic metamaterial inspired by Islamic motif art is designed by integrating four-pointed double re-entrant motifs with symmetric semi-hexagonal unit cells to achieve a high energy absorption capacity(EAC).Theoretical analyses and numerical simulations are performed to examine the dynamic crushing behavior of the four-pointed double re-entrant combined structure(FDRCS).The developed finite element models(FEMs)are validated by the experiments under quasi-static compression.The deformation mode and stress-strain curves are further studied under low,medium,and high crushing velocities.The theoretically predicted plateau stress of the FDRCS under different crushing velocities is consistent with the numerical simulation results.The crushing stress and the EAC of the FDRCS are influenced by the geometric parameters and crushing velocities.The FDRCS exhibits a negative Poisson's ratio(NPR),owing to the four-point re-entrant structure(RES).Moreover,the specific energy absorption(SEA)of these structures is higher than that of nonauxetic hexagonal and auxetic re-entrant structures,owing to the generation of more plastic hinges that dissipate more energy during dynamic crushing.
基金supported by Guangdong Province and Chinese Academy of Science Comprehensive Strategic Cooperation of China(Grant No. 2011A090100019)College Discipline Innovation Wisdom Plan of China (Grant No. B07018)
文摘Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design.