期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:7
1
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure GA-BP hybrid algorithm IMPACT energy-absorption characteristic FORECAST
下载PDF
Recent research development of energy-absorption structure and application for railway vehicles 被引量:11
2
作者 GAO Guang-jun ZHUO Tian-yu GUAN Wei-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1012-1038,共27页
As the application of energy-absorption structure reaches an unprecedented scale in both academia and industry, a reflection upon the state-of-the-art developments in the crashworthiness design and structural optimiza... As the application of energy-absorption structure reaches an unprecedented scale in both academia and industry, a reflection upon the state-of-the-art developments in the crashworthiness design and structural optimization, becomes vital for successfully shaping the future energy-absorption structure. Physical impacting test and numerical simulation are the main methods to study the crashworthiness of railway vehicles at present. The end collision deformation area of the train can generally be divided into two kinds of structural design forms: integral absorbing structure design form and specific energy absorbing structure design form, and different energy-absorption structures introduced in this article can be equipped on different railway vehicles, so as to meet the balance of crashworthiness and economy. In pursuit of improving the capacity of energy dissipation in energy-absorption structures, studies are increasingly investigating multistage energy absorption systems, searching breakthrough when the energy dissipation capacity of the energy-absorption structure reaches its limit. In order to minimize injuries, a self-protective posture for occupants is also studied. Despite the abundance of energy-absorption structure research methods to-date, the problems of analysis and prediction during impact are still scarce, which is constituting one of many key challenges for the future. 展开更多
关键词 railway vehicle energy-absorption structure CRASHWORTHINESS
下载PDF
Dynamic crushing behavior and energy absorption of hybrid auxetic metamaterial inspired by Islamic motif art
3
作者 Ruilan TIAN Huaitong GUAN +4 位作者 Xuhao LU Xiaolong ZHANG Huanan HAO Wenjie FENG Guanglei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期345-362,共18页
Auxetic honeycomb structures are promising metamaterials with outstanding mechanical properties,and can be potentially used in energy absorption applications.In this study,a novel modified re-entrant hybrid auxetic me... Auxetic honeycomb structures are promising metamaterials with outstanding mechanical properties,and can be potentially used in energy absorption applications.In this study,a novel modified re-entrant hybrid auxetic metamaterial inspired by Islamic motif art is designed by integrating four-pointed double re-entrant motifs with symmetric semi-hexagonal unit cells to achieve a high energy absorption capacity(EAC).Theoretical analyses and numerical simulations are performed to examine the dynamic crushing behavior of the four-pointed double re-entrant combined structure(FDRCS).The developed finite element models(FEMs)are validated by the experiments under quasi-static compression.The deformation mode and stress-strain curves are further studied under low,medium,and high crushing velocities.The theoretically predicted plateau stress of the FDRCS under different crushing velocities is consistent with the numerical simulation results.The crushing stress and the EAC of the FDRCS are influenced by the geometric parameters and crushing velocities.The FDRCS exhibits a negative Poisson's ratio(NPR),owing to the four-point re-entrant structure(RES).Moreover,the specific energy absorption(SEA)of these structures is higher than that of nonauxetic hexagonal and auxetic re-entrant structures,owing to the generation of more plastic hinges that dissipate more energy during dynamic crushing. 展开更多
关键词 re-entrant honeycomb auxetic hybrid metamaterial energy-absorption dynamic crushing
下载PDF
Crashworthiness Analysis on Alternative Square Honeycomb Structure under Axial Loading 被引量:5
4
作者 LI Meng DENG Zongquan +2 位作者 GUO Hongwei LIU Rongqiang DING Beichen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期784-792,共9页
Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the... Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design. 展开更多
关键词 CRASHWORTHINESS alternative square honeycomb energy-absorption characteristic response surface methodology numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部