Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) durin...Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7km in all of the years, the year-to- year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convee- tive-stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Nifio-3 index, with more (less) rainfall and latent heating during La Nifia (El Nifio) years. Analysis of the large-scale environment revealed that years of active rain- fall and latent heating corresponded to years of large deep convergence and relative humidity at 600hPa. The moisture budget diag- nosis indicated that the interarmual variation of humidity at 600hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic com- ponent associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Nifia years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.展开更多
In the warming world, tropical Pacific sea surface temperature (SST) variation has received considerable attention because of its enormous influence on global climate change, particularly the El Nino-Southern Oscill...In the warming world, tropical Pacific sea surface temperature (SST) variation has received considerable attention because of its enormous influence on global climate change, particularly the El Nino-Southern Oscillation process. Here, we provide new high-resolution proxy records of the magnesium/ calcium ratio and the oxygen isotope in foraminifera from a core on the Ontong-Java Plateau to reconstruct the SST and hydrological variation in the center of the Western Pacific Warm Pool (WPWP) over the last 360 000 years. In comparison with other Mg/Ca-derived SST and δ18O records, the results suggested that in a relatively stable condition, e.g., the last glacial maximum (LGM) and other glacial periods, the tropical Pacific would adopt a La Nifia-like state, and the Walker and Hadley cycles would be synchronously enhanced. Conversely, El Nino-like conditions could have occurred in the tropical Pacific during fast- changing periods, e.g., the termination and rapidly cooling stages of interglacial periods. In the light of the sensitivity of the Eastern Pacific Cold Tongue (EPCT) and the inertia of the WPWP, we hypothesize an inter-restricted relationship between the WPWP and EPCT, which could control the zonal gradient variation of SST and affect climate change.展开更多
A season-reliant empirical orthogonal function (S-EOF) analysis was applied to the seasonal mean SST anomalies (SSTAs) based on the HadISST1 dataset with linear trend removed at every grid point in the South Pacif...A season-reliant empirical orthogonal function (S-EOF) analysis was applied to the seasonal mean SST anomalies (SSTAs) based on the HadISST1 dataset with linear trend removed at every grid point in the South Pacific (60.5°-19.5°S, 139.5°E-60.5°W) during the period 1979-2009. The spatiotemporal characteristics of the dominant modes and their relationships with ENSO were analyzed. The results show that there are two seasonally evolving dominant modes of SSTAs in the South Pacific with interannual and interdeeadal variations; they account for nearly 40% of the total variance. Although the seasonal evolution of spatial patterns of the first S-EOF mode (S-EOF1) did not show remarkable propagation, it decays with season remarkably. The second S-EOF mode (S-EOF2) showed significant seasonal evolution and intensified with season, with distinct characteristics of eastward propagation of the negative SSTAs in southern New Zealand and positive SSTAs southeast of Australia. Both of these two modes have significant relationships with ENSO. These two modes correspond to the post-ENSO and ENSO turnabout years, respectively. The S- EOF1 mode associated with the decay of the eastern Pacific (EP) and the central Pacific (CP) types of ENSO exhibited a more significant relationship with the EP/CP type of E1 Nifio than that with the EP/CP type of La Nifia. The S-EOF2 mode contacted with the EP type of E1 Nifio changing into the EP/CP type of La Nifia showed a more significant connection with the EP/CP type of La Nifia.展开更多
With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational dat...With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation.展开更多
Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns ...Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns of the SST anomalies (SSTAs) that occurred in the South China Sea (SCS) during the mature phase of the E1 Nifio/Southem Oscillation. The most dominant characteristic was that of the out- of-phase variation between southwestern and northeastern parts of the SCS, which was influenced primarily by the net surface heat flux and by horizontal thermal advection. The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during E1 Nifio episodes. Conversely, it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during E1 Nifio episodes led to the development of the positive SSTA in the southwestern SCS.展开更多
【Title】There are knowledge gaps in our understanding of vegetation responses to multi-scale climate-related variables in tropical/subtropical mountainous islands in the Asia-Pacific region. Therefore, this study inv...【Title】There are knowledge gaps in our understanding of vegetation responses to multi-scale climate-related variables in tropical/subtropical mountainous islands in the Asia-Pacific region. Therefore, this study investigated inter-annual vegetation dynamics and regular/irregular climate patterns in Taiwan. We applied principal component analysis (PCA) on 11 years (2001~2011) of high-dimensional monthly photosynthetically active vegetation cover (PV) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and investigated the relationships between spatiotemporal patterns of the eigenvectors and loadings of each component through time and multi-scale climate-related variations. Results showed that the first five components contributed to 96.4% of the total variance. The first component (PC1, explaining 94.5% of variance) loadings, as expected, were significantly correlated with the temporal dynamics of the PV (r = 0.94), which was mainly governed by regional climate. The temporal loadings of PC2 and PC3 (0.8% and 0.6% of variance, respectively) were significantly correlated with the temporal dynamics of the PV of forests (r = 0.72) and the farmlands (r = 0.80), respectively. The low-order components (PC4 and PC5, 0.3% and 0.2% of variance, respectively) were closely related to the occurrence of drought (r = 0.49) and to irregular ENSO associated climate anomalies (r = -0.54), respectively. Pronounced correlations were also observed between PC5 and the Southern Oscillation Index (SOI) with one to three months of time lags (r = -0.35 ~ -0.43, respectively), revealing biophysical memory effects on the time-series pattern of the vegetation through ENSO-related rainfall patterns. Our findings reveal that the sensitivity of the ecosystems in this tropical/subtropical mountainous island may not only be regulated by regional climate and human activities but also be susceptible to large-scale climate anomalies which are crucial and comparable to previous large scale analyses. This study demonstrates that PCA can be an effective tool for analyzing seasonal and inter-annual variability of vegetation dynamics across this tropical/subtropical mountainous islandin the Pacific Ocean, which provides an opportunity to forecast the responses and feedbacks of terrestrial environments to future climate scenarios.展开更多
The influence of E1 Nifio-Southern Oscillation (ENSO) on the convectively coupled Kelvin waves over the tropical Pacific is investigated by comparing the Kelvin wave activity in the eastern Pacific (EP) E1 Nifio, ...The influence of E1 Nifio-Southern Oscillation (ENSO) on the convectively coupled Kelvin waves over the tropical Pacific is investigated by comparing the Kelvin wave activity in the eastern Pacific (EP) E1 Nifio, central Pacific (CP) E1 Nifio, and La Nifia years, respectively, to 30-yr (1982 2011) mean statistics. The convectively coupled Kelvin waves in this study are represented by the two leading modes of empirical orthogonal function (EOF) of 2-25-day band-pass filtered daily outgoing longwave radiation (OLR), with the estimated zonal wavenumber of 3 or 4, period of 8 days, and eastward propagating speed of 17 m s-1. The most significant impact of ENSO on the Kelvin wave activity is the intensification of the Kelvin waves during the EP E1 Nifios. The impact of La Nifia on the reduction of the Kelvin wave intensity is relatively weaker, reflecting the nonlinearity of tropical deep convection and the associated Kelvin waves in response to ENSO sea surface temperature (SST) anomalies. The impact of the CP E1 Nifio on the Kelvin waves is less significant due to relatively weaker SST anomalies and smaller spatial coverage. ENSO may also alter the frequency, wavelength, and phase speed of the Kelvin waves. This study demonstrates that low- frequency ENSO SST anomalies modulate high-frequency tropical disturbances, an example of weather- climate linkage.展开更多
The gridded (1/3°*1/3°) altimetry data from October 1992 through December 2004 were analyzed to study the seasonal and interannual variabilities of the bifurcation of the North Equatorial Current (NEC) ...The gridded (1/3°*1/3°) altimetry data from October 1992 through December 2004 were analyzed to study the seasonal and interannual variabilities of the bifurcation of the North Equatorial Current (NEC) at the surface in the western North Pacific Ocean. Calculations show that on annual average the bifurcation occurs at about 13.4°N at the surface. The geostrophic flow derived from Sea Surface Height (SSH) data shows that the southernmost latitude of the NEC bifurcation at the surface is about 12.9°N in June and the northernmost latitude is about 14.1°N in December. Correlation analyses between the bifurcation latitude and the Southern Oscillation Index (SOl) suggest that the bifurcation latitude is highly correlated with the E1 Nino/Southern Oscillation (ENSO) events. During the E1 Nino years the bifurcation of the NEC takes place at higher latitudes and vice versa.展开更多
基金funded by the Guangdong Natural Science Foundation (No.2015A030313796)the National Natural Science Foundation of China (No.41205026)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA11010104)the Knowledge Innovation Program of Chinese Academy of Sciences (SQ201208)the foundation for returned scholars of Ministry of Education of China and the research fund for the doctoral program of Higher Education for Youths
文摘Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7km in all of the years, the year-to- year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convee- tive-stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Nifio-3 index, with more (less) rainfall and latent heating during La Nifia (El Nifio) years. Analysis of the large-scale environment revealed that years of active rain- fall and latent heating corresponded to years of large deep convergence and relative humidity at 600hPa. The moisture budget diag- nosis indicated that the interarmual variation of humidity at 600hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic com- ponent associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Nifia years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.
基金Supported by the Knowledge Innovation Engineering Project of Chinese Academy of Sciences(No.XDA10010305)the National Special Project for‘Global Change and Air-Sea Interaction’(No.GASI-04-01-02)the National Natural Science Foundation of China(Nos.41230959,41076030,41576051)
文摘In the warming world, tropical Pacific sea surface temperature (SST) variation has received considerable attention because of its enormous influence on global climate change, particularly the El Nino-Southern Oscillation process. Here, we provide new high-resolution proxy records of the magnesium/ calcium ratio and the oxygen isotope in foraminifera from a core on the Ontong-Java Plateau to reconstruct the SST and hydrological variation in the center of the Western Pacific Warm Pool (WPWP) over the last 360 000 years. In comparison with other Mg/Ca-derived SST and δ18O records, the results suggested that in a relatively stable condition, e.g., the last glacial maximum (LGM) and other glacial periods, the tropical Pacific would adopt a La Nifia-like state, and the Walker and Hadley cycles would be synchronously enhanced. Conversely, El Nino-like conditions could have occurred in the tropical Pacific during fast- changing periods, e.g., the termination and rapidly cooling stages of interglacial periods. In the light of the sensitivity of the Eastern Pacific Cold Tongue (EPCT) and the inertia of the WPWP, we hypothesize an inter-restricted relationship between the WPWP and EPCT, which could control the zonal gradient variation of SST and affect climate change.
文摘A season-reliant empirical orthogonal function (S-EOF) analysis was applied to the seasonal mean SST anomalies (SSTAs) based on the HadISST1 dataset with linear trend removed at every grid point in the South Pacific (60.5°-19.5°S, 139.5°E-60.5°W) during the period 1979-2009. The spatiotemporal characteristics of the dominant modes and their relationships with ENSO were analyzed. The results show that there are two seasonally evolving dominant modes of SSTAs in the South Pacific with interannual and interdeeadal variations; they account for nearly 40% of the total variance. Although the seasonal evolution of spatial patterns of the first S-EOF mode (S-EOF1) did not show remarkable propagation, it decays with season remarkably. The second S-EOF mode (S-EOF2) showed significant seasonal evolution and intensified with season, with distinct characteristics of eastward propagation of the negative SSTAs in southern New Zealand and positive SSTAs southeast of Australia. Both of these two modes have significant relationships with ENSO. These two modes correspond to the post-ENSO and ENSO turnabout years, respectively. The S- EOF1 mode associated with the decay of the eastern Pacific (EP) and the central Pacific (CP) types of ENSO exhibited a more significant relationship with the EP/CP type of E1 Nifio than that with the EP/CP type of La Nifia. The S-EOF2 mode contacted with the EP type of E1 Nifio changing into the EP/CP type of La Nifia showed a more significant connection with the EP/CP type of La Nifia.
基金The National Natural Science Foundation of China under contract No.41405062
文摘With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation.
基金Supported by the National Natural Science Foundation of China(No.41306026)the Scientific Research Foundation of the Third Institute of Oceanography,SOA(No.2013009)+1 种基金the National Basic Research Program of China(973 Program)(No.2011CB403504)the National Special Research Fund for Non-Profit Marine Sector(No.201005005-2)
文摘Based on the 18-year (1993-2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature (SST) and simple ocean data assimilation datasets, this study investigated the patterns of the SST anomalies (SSTAs) that occurred in the South China Sea (SCS) during the mature phase of the E1 Nifio/Southem Oscillation. The most dominant characteristic was that of the out- of-phase variation between southwestern and northeastern parts of the SCS, which was influenced primarily by the net surface heat flux and by horizontal thermal advection. The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during E1 Nifio episodes. Conversely, it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during E1 Nifio episodes led to the development of the positive SSTA in the southwestern SCS.
基金sponsored by the grants of the National Science Council of Taiwan(NSC 98-2221E-002-198-,NSC 98-2313-B-002-062-MY2,NSC 100-2621-B-002-001-MY3)National Taiwan University(EcoNTU:NTU-CESRP-102R7604-2)
文摘【Title】There are knowledge gaps in our understanding of vegetation responses to multi-scale climate-related variables in tropical/subtropical mountainous islands in the Asia-Pacific region. Therefore, this study investigated inter-annual vegetation dynamics and regular/irregular climate patterns in Taiwan. We applied principal component analysis (PCA) on 11 years (2001~2011) of high-dimensional monthly photosynthetically active vegetation cover (PV) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and investigated the relationships between spatiotemporal patterns of the eigenvectors and loadings of each component through time and multi-scale climate-related variations. Results showed that the first five components contributed to 96.4% of the total variance. The first component (PC1, explaining 94.5% of variance) loadings, as expected, were significantly correlated with the temporal dynamics of the PV (r = 0.94), which was mainly governed by regional climate. The temporal loadings of PC2 and PC3 (0.8% and 0.6% of variance, respectively) were significantly correlated with the temporal dynamics of the PV of forests (r = 0.72) and the farmlands (r = 0.80), respectively. The low-order components (PC4 and PC5, 0.3% and 0.2% of variance, respectively) were closely related to the occurrence of drought (r = 0.49) and to irregular ENSO associated climate anomalies (r = -0.54), respectively. Pronounced correlations were also observed between PC5 and the Southern Oscillation Index (SOI) with one to three months of time lags (r = -0.35 ~ -0.43, respectively), revealing biophysical memory effects on the time-series pattern of the vegetation through ENSO-related rainfall patterns. Our findings reveal that the sensitivity of the ecosystems in this tropical/subtropical mountainous island may not only be regulated by regional climate and human activities but also be susceptible to large-scale climate anomalies which are crucial and comparable to previous large scale analyses. This study demonstrates that PCA can be an effective tool for analyzing seasonal and inter-annual variability of vegetation dynamics across this tropical/subtropical mountainous islandin the Pacific Ocean, which provides an opportunity to forecast the responses and feedbacks of terrestrial environments to future climate scenarios.
文摘The influence of E1 Nifio-Southern Oscillation (ENSO) on the convectively coupled Kelvin waves over the tropical Pacific is investigated by comparing the Kelvin wave activity in the eastern Pacific (EP) E1 Nifio, central Pacific (CP) E1 Nifio, and La Nifia years, respectively, to 30-yr (1982 2011) mean statistics. The convectively coupled Kelvin waves in this study are represented by the two leading modes of empirical orthogonal function (EOF) of 2-25-day band-pass filtered daily outgoing longwave radiation (OLR), with the estimated zonal wavenumber of 3 or 4, period of 8 days, and eastward propagating speed of 17 m s-1. The most significant impact of ENSO on the Kelvin wave activity is the intensification of the Kelvin waves during the EP E1 Nifios. The impact of La Nifia on the reduction of the Kelvin wave intensity is relatively weaker, reflecting the nonlinearity of tropical deep convection and the associated Kelvin waves in response to ENSO sea surface temperature (SST) anomalies. The impact of the CP E1 Nifio on the Kelvin waves is less significant due to relatively weaker SST anomalies and smaller spatial coverage. ENSO may also alter the frequency, wavelength, and phase speed of the Kelvin waves. This study demonstrates that low- frequency ENSO SST anomalies modulate high-frequency tropical disturbances, an example of weather- climate linkage.
基金Project supported by the National Natural Science Foundation of China (Grants Nos: D06-40552002, 40576016) the Qingdao Municipal Bureau of Science and Technology (Grant No: 02-KJYSH-03).
文摘The gridded (1/3°*1/3°) altimetry data from October 1992 through December 2004 were analyzed to study the seasonal and interannual variabilities of the bifurcation of the North Equatorial Current (NEC) at the surface in the western North Pacific Ocean. Calculations show that on annual average the bifurcation occurs at about 13.4°N at the surface. The geostrophic flow derived from Sea Surface Height (SSH) data shows that the southernmost latitude of the NEC bifurcation at the surface is about 12.9°N in June and the northernmost latitude is about 14.1°N in December. Correlation analyses between the bifurcation latitude and the Southern Oscillation Index (SOl) suggest that the bifurcation latitude is highly correlated with the E1 Nino/Southern Oscillation (ENSO) events. During the E1 Nino years the bifurcation of the NEC takes place at higher latitudes and vice versa.