The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal...The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area.展开更多
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi...A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.展开更多
El Niño-Southern Oscillation(ENSO)can be currently predicted reasonably well six months and longer,but large biases and uncertainties remain in its real-time prediction.Various approaches have been taken to impro...El Niño-Southern Oscillation(ENSO)can be currently predicted reasonably well six months and longer,but large biases and uncertainties remain in its real-time prediction.Various approaches have been taken to improve understanding of ENSO processes,and different models for ENSO predictions have been developed,including linear statistical models based on principal oscillation pattern(POP)analyses,convolutional neural networks(CNNs),and so on.Here,we develop a novel hybrid model,named as POP-Net,by combining the POP analysis procedure with CNN-long short-term memory(LSTM)algorithm to predict the Niño-3.4 sea surface temperature(SST)index.ENSO predictions are compared with each other from the corresponding three models:POP model,CNN-LSTM model,and POP-Net,respectively.The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise.Consequently,an improved prediction is achieved in the POP-Net relative to others.The POP-Net shows a high-correlation skill for 17-month lead time prediction(correlation coefficients exceeding 0.5)during the 1994-2020 validation period.The POP-Net also alleviates the spring predictability barrier(SPB).It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations.展开更多
The alpha–beta filter algorithm has been widely researched for various applications,for example,navigation and target tracking systems.To improve the dynamic performance of the alpha–beta filter algorithm,a new pred...The alpha–beta filter algorithm has been widely researched for various applications,for example,navigation and target tracking systems.To improve the dynamic performance of the alpha–beta filter algorithm,a new prediction learning model is proposed in this study.The proposed model has two main components:(1)the alpha–beta filter algorithm is the main prediction module,and(2)the learning module is a feedforward artificial neural network(FF‐ANN).Furthermore,the model uses two inputs,temperature sensor and humidity sensor data,and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings.Using the novel proposed technique,prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network,and also reduces the root mean square error(RMSE)and mean absolute error(MAE).We carried out different experiments with different experimental setups.The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter.A higher prediction accuracy was achieved,and the MAE and RMSE were 35.1%–38.2%respectively.The final proposed model results show increased performance when compared to traditional methods.展开更多
The relative permittivity is one of the essential parameters determines the physical polarization behaviors of the nanocomposite dielectrics in many applications,particularly for capacitive energy storage.Predicting t...The relative permittivity is one of the essential parameters determines the physical polarization behaviors of the nanocomposite dielectrics in many applications,particularly for capacitive energy storage.Predicting the relative permittivity of particle/polymer nanocomposites from the microstructure is of great significance.However,the classical effective medium theory and physics-based numerical calculation represented by finite element method are time-consuming and cumbersome for complex structures and nonlinear problem.The work explores a novel architecture combining the convolutional neural network(ConvNet)and finite element method(FEM)to predict the relative permittivity of nanocomposite dielectrics with incorporated barium titanite(BT)particles in polyvinylidene fluoride(PVDF)matrix.The ConvNet was trained and evaluated on big datasets with 14266 training data and 3514 testing data generated form a programmatic algorithm.Through numerical experiments,we demonstrate that the trained network can efficiently provide an accurate agreement between the ConvNet model and FEM by virtue of the significant evaluation metrics R2,which reaches as high as 0.9783 and 0.9375 on training and testing data,respectively.The strong universality of the presented method allows for an extension to fast and accurately predict other properties of the nanocomposite dielectrics.展开更多
In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate ...In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate the accuracy of the model. The result shows that the predicted accuracy of the models is about 85%.展开更多
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in...The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.展开更多
Cavity trees are integral components of healthy forest ecosystems and provide habitat and shelter for a wide variety of wildlife species. Thus, monitoring and predicting cavity tree abundance is an important part of f...Cavity trees are integral components of healthy forest ecosystems and provide habitat and shelter for a wide variety of wildlife species. Thus, monitoring and predicting cavity tree abundance is an important part of forest management and wildlife conservation. However, cavity trees are relatively rare and their abundance can vary dramatically among forest stands, even when the stands are similar in most other respects. This makes it difficult to model and predict cavity tree density. We utilized data from the Missouri Ozark Forest Ecosystem Project to show that it is virtually impossible to accurately predict cavity tree occurrence for individual trees or to predict mean cavity tree abundance for individual forest stands. However, we further show that it is possible to model and predict mean cavity tree density for larger spatial areas. We illustrate the prediction error monotonically decreases as the spatial scale of predictions in-creases. We successfully explored the utility of three classes of models for predicting cavity tree probability/density: logistic regression, neural network, and classification and regression tree (CART). The results provide valuable insights into methods for landscape-scale mapping of cavity trees for wildlife habitat management, and also on sample size determination for cavity tree surveys and monitoring.展开更多
文摘The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area.
文摘A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19060102)the National Natural Science Foundation of China[NSFCGrant Nos.41690122(41690120),and 42030410].
文摘El Niño-Southern Oscillation(ENSO)can be currently predicted reasonably well six months and longer,but large biases and uncertainties remain in its real-time prediction.Various approaches have been taken to improve understanding of ENSO processes,and different models for ENSO predictions have been developed,including linear statistical models based on principal oscillation pattern(POP)analyses,convolutional neural networks(CNNs),and so on.Here,we develop a novel hybrid model,named as POP-Net,by combining the POP analysis procedure with CNN-long short-term memory(LSTM)algorithm to predict the Niño-3.4 sea surface temperature(SST)index.ENSO predictions are compared with each other from the corresponding three models:POP model,CNN-LSTM model,and POP-Net,respectively.The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise.Consequently,an improved prediction is achieved in the POP-Net relative to others.The POP-Net shows a high-correlation skill for 17-month lead time prediction(correlation coefficients exceeding 0.5)during the 1994-2020 validation period.The POP-Net also alleviates the spring predictability barrier(SPB).It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations.
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2020‐0‐01441,Artificial Intelligence Convergence Research Center(Chungnam National University))“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS‐004).
文摘The alpha–beta filter algorithm has been widely researched for various applications,for example,navigation and target tracking systems.To improve the dynamic performance of the alpha–beta filter algorithm,a new prediction learning model is proposed in this study.The proposed model has two main components:(1)the alpha–beta filter algorithm is the main prediction module,and(2)the learning module is a feedforward artificial neural network(FF‐ANN).Furthermore,the model uses two inputs,temperature sensor and humidity sensor data,and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings.Using the novel proposed technique,prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network,and also reduces the root mean square error(RMSE)and mean absolute error(MAE).We carried out different experiments with different experimental setups.The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter.A higher prediction accuracy was achieved,and the MAE and RMSE were 35.1%–38.2%respectively.The final proposed model results show increased performance when compared to traditional methods.
基金supported by the National Natural Science Foundation of China(Nos.52107018 and 51937007)National Key Research and Development Program of China(No.2021YFB2401502).
文摘The relative permittivity is one of the essential parameters determines the physical polarization behaviors of the nanocomposite dielectrics in many applications,particularly for capacitive energy storage.Predicting the relative permittivity of particle/polymer nanocomposites from the microstructure is of great significance.However,the classical effective medium theory and physics-based numerical calculation represented by finite element method are time-consuming and cumbersome for complex structures and nonlinear problem.The work explores a novel architecture combining the convolutional neural network(ConvNet)and finite element method(FEM)to predict the relative permittivity of nanocomposite dielectrics with incorporated barium titanite(BT)particles in polyvinylidene fluoride(PVDF)matrix.The ConvNet was trained and evaluated on big datasets with 14266 training data and 3514 testing data generated form a programmatic algorithm.Through numerical experiments,we demonstrate that the trained network can efficiently provide an accurate agreement between the ConvNet model and FEM by virtue of the significant evaluation metrics R2,which reaches as high as 0.9783 and 0.9375 on training and testing data,respectively.The strong universality of the presented method allows for an extension to fast and accurately predict other properties of the nanocomposite dielectrics.
文摘In this paper, three layers of BP neural network were used to model the shearing properties of worsted fabrics. We train the neural network models with 27 kinds of fabrics, and then use 6 kinds of fabrics to validate the accuracy of the model. The result shows that the predicted accuracy of the models is about 85%.
基金Science and Technology Funds from the Liaoning Education Department(Serial Number:LJKZ0104).
文摘The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos.
文摘Cavity trees are integral components of healthy forest ecosystems and provide habitat and shelter for a wide variety of wildlife species. Thus, monitoring and predicting cavity tree abundance is an important part of forest management and wildlife conservation. However, cavity trees are relatively rare and their abundance can vary dramatically among forest stands, even when the stands are similar in most other respects. This makes it difficult to model and predict cavity tree density. We utilized data from the Missouri Ozark Forest Ecosystem Project to show that it is virtually impossible to accurately predict cavity tree occurrence for individual trees or to predict mean cavity tree abundance for individual forest stands. However, we further show that it is possible to model and predict mean cavity tree density for larger spatial areas. We illustrate the prediction error monotonically decreases as the spatial scale of predictions in-creases. We successfully explored the utility of three classes of models for predicting cavity tree probability/density: logistic regression, neural network, and classification and regression tree (CART). The results provide valuable insights into methods for landscape-scale mapping of cavity trees for wildlife habitat management, and also on sample size determination for cavity tree surveys and monitoring.