In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that th...In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that the flow-dependent model prediction errors are to some degree similar under analogous historical climate states, and so the historical errors can be used to effectively reduce such flow-dependent errors. With this method, the unknown errors in current ENSO predictions can be empirically estimated by using the known prediction errors which are diagnosed by the same model based on historical analogue states. The authors first propose the basic idea for applying the ACE method to ENSO prediction and then establish an analogue-dynamical ENSO prediction system based on an operational climate prediction model. The authors present some experimental results which clearly show the possibility of correcting the flow-dependent errors in ENSO prediction, and thus the potential of applying the ACE method to operational ENSO prediction based on climate models.展开更多
基金supported by the Integration and Application Project for Key Meteorology Techniques in China Meteorological Administration (Grant No. CMAGJ2014M64)the China Meteorological Special Project (Grant No. GYHY2012 06016)the National Basic Research Program of China (973 Program, Grant No. 2010CB950404)
文摘In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that the flow-dependent model prediction errors are to some degree similar under analogous historical climate states, and so the historical errors can be used to effectively reduce such flow-dependent errors. With this method, the unknown errors in current ENSO predictions can be empirically estimated by using the known prediction errors which are diagnosed by the same model based on historical analogue states. The authors first propose the basic idea for applying the ACE method to ENSO prediction and then establish an analogue-dynamical ENSO prediction system based on an operational climate prediction model. The authors present some experimental results which clearly show the possibility of correcting the flow-dependent errors in ENSO prediction, and thus the potential of applying the ACE method to operational ENSO prediction based on climate models.