利用EO S-M OD IS遥感数据,基于线性混合模型,提出了一种新的作物冠层温度反演方法。首先,利用EO S-M OD IS数据提取了陆地表面温度LST和植被指数NDV I。然后,假定地表只有植被和裸地两种组分,通过植被指数温度V I-T s方法来估算裸土的...利用EO S-M OD IS遥感数据,基于线性混合模型,提出了一种新的作物冠层温度反演方法。首先,利用EO S-M OD IS数据提取了陆地表面温度LST和植被指数NDV I。然后,假定地表只有植被和裸地两种组分,通过植被指数温度V I-T s方法来估算裸土的组分温度,作物冠层温度通过线性混合模型来求解。为了验证反演的地表温度和冠层温度的精度,把反演的地表温度与NA SA M OD IS地表温度产品进行差值运算,在差值图像中90%以上的像元灰度值分布在-1和1之间,像元灰度的平均值小于0.5;同时在河北固城农业气象试验站对冬小麦冠层温度进行同步观测,通过与反演的冠层温度进行比较,其误差在±1.5℃左右。结果表明,文中所提出的作物冠层温度反演方法精度较高,其结果能够满足有关作物生长模型以及土壤水分模型对输入参数的精度要求。展开更多
文摘利用EO S-M OD IS遥感数据,基于线性混合模型,提出了一种新的作物冠层温度反演方法。首先,利用EO S-M OD IS数据提取了陆地表面温度LST和植被指数NDV I。然后,假定地表只有植被和裸地两种组分,通过植被指数温度V I-T s方法来估算裸土的组分温度,作物冠层温度通过线性混合模型来求解。为了验证反演的地表温度和冠层温度的精度,把反演的地表温度与NA SA M OD IS地表温度产品进行差值运算,在差值图像中90%以上的像元灰度值分布在-1和1之间,像元灰度的平均值小于0.5;同时在河北固城农业气象试验站对冬小麦冠层温度进行同步观测,通过与反演的冠层温度进行比较,其误差在±1.5℃左右。结果表明,文中所提出的作物冠层温度反演方法精度较高,其结果能够满足有关作物生长模型以及土壤水分模型对输入参数的精度要求。