基于混凝土两相介质细观模型和Kong-Fang材料模型,将混凝土看作骨料和水泥石两相介质,通过数值模拟得到混凝土的高压状态方程(equation of state,EoS)。骨料和水泥石均采用Kong-Fang材料模型描述,其中破坏面参数自动生成,高压状态方程...基于混凝土两相介质细观模型和Kong-Fang材料模型,将混凝土看作骨料和水泥石两相介质,通过数值模拟得到混凝土的高压状态方程(equation of state,EoS)。骨料和水泥石均采用Kong-Fang材料模型描述,其中破坏面参数自动生成,高压状态方程分别采用分段线性拟合平板撞击实验数据和改进的混合法则得到。该模型和方法得到了已有平板撞击实验的较好验证,并在细观尺度上分析了混凝土中冲击波传播规律,发现数值模拟和已有实验中观测到的压力波动现象是混凝土材料的非均质性引起的。参数敏感性分析结果表明破坏面参数对高压状态方程影响较小,而水灰比对其影响较大。展开更多
文摘基于混凝土两相介质细观模型和Kong-Fang材料模型,将混凝土看作骨料和水泥石两相介质,通过数值模拟得到混凝土的高压状态方程(equation of state,EoS)。骨料和水泥石均采用Kong-Fang材料模型描述,其中破坏面参数自动生成,高压状态方程分别采用分段线性拟合平板撞击实验数据和改进的混合法则得到。该模型和方法得到了已有平板撞击实验的较好验证,并在细观尺度上分析了混凝土中冲击波传播规律,发现数值模拟和已有实验中观测到的压力波动现象是混凝土材料的非均质性引起的。参数敏感性分析结果表明破坏面参数对高压状态方程影响较小,而水灰比对其影响较大。