为了方便管柱式电动助力转向(column type electric power steering,C-EPS)控制系统的设计与研究,应用MATLAB/dSPACE实时仿真系统等工具搭建了C-EPS硬件在环仿真平台。构建了转向阻力矩计算模块,并由dSPACE控制伺服电机来输出转向阻力矩...为了方便管柱式电动助力转向(column type electric power steering,C-EPS)控制系统的设计与研究,应用MATLAB/dSPACE实时仿真系统等工具搭建了C-EPS硬件在环仿真平台。构建了转向阻力矩计算模块,并由dSPACE控制伺服电机来输出转向阻力矩;设计了具有助力模式、回正模式和故障模式的C-EPS控制策略,并利用本平台对电流跟随、转向助力轻便性等项目进行了硬件在环仿真试验。结果表明:电流跟随试验中电机实际电流相对目标电流约有0.05 s的滞后;在5 km/h的低速工况下转向输入力矩从11 N·m降到2 N·m,具有较好的转向轻便性,且能实现主动回正功能;在60 km/h的高速工况下转向输入力矩随车速提高而增大,从而保证车辆具有良好的行驶稳定性。可见,我们所搭建的平台能够实现C-EPS控制策略的硬件在环仿真,这为C-EPS的后续开发打下了基础。展开更多
文摘为了方便管柱式电动助力转向(column type electric power steering,C-EPS)控制系统的设计与研究,应用MATLAB/dSPACE实时仿真系统等工具搭建了C-EPS硬件在环仿真平台。构建了转向阻力矩计算模块,并由dSPACE控制伺服电机来输出转向阻力矩;设计了具有助力模式、回正模式和故障模式的C-EPS控制策略,并利用本平台对电流跟随、转向助力轻便性等项目进行了硬件在环仿真试验。结果表明:电流跟随试验中电机实际电流相对目标电流约有0.05 s的滞后;在5 km/h的低速工况下转向输入力矩从11 N·m降到2 N·m,具有较好的转向轻便性,且能实现主动回正功能;在60 km/h的高速工况下转向输入力矩随车速提高而增大,从而保证车辆具有良好的行驶稳定性。可见,我们所搭建的平台能够实现C-EPS控制策略的硬件在环仿真,这为C-EPS的后续开发打下了基础。