Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfus...Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfusion may exacerbate neurological damage.While pharmacological interventions have demonstrated initial potential in addressing CSDs,a standardized treatment approach has not yet been established.The objective of this perspective is to explore emerging bioelectronic methodologies for addressing CSDs,particularly emphasizing TNS,and to underscore TNS’s capacity to enhance neurovascular coupling and cerebral perfusion.展开更多
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e...Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.展开更多
Heart rate variability(HRV)that can reflect the dynamic balance between the sympathetic nervous and parasympathetic nervous of human autonomic nervous system(ANS)has attracted considerable attention.However,traditiona...Heart rate variability(HRV)that can reflect the dynamic balance between the sympathetic nervous and parasympathetic nervous of human autonomic nervous system(ANS)has attracted considerable attention.However,traditional electrocardiogram(ECG)devices for HRV analysis are bulky,and hard wires are needed to attach measuring electrodes to the chest,resulting in the poor wearable experience during the long-term measurement.Compared with that,wearable electronics enabling continuously cardiac signals monitoring and HRV assessment provide a desirable and promising approach for helping subjects determine sleeping issues,cardiovascular diseases,or other threats to physical and mental well-being.Until now,significant progress and advances have been achieved in wearable electronics for HRV monitoring and applications for predicting human physical and mental well-being.In this review,the latest progress in the integration of wearable electronics and HRV analysis as well as practical applications in assessment of human physical and mental health are included.The commonly used methods and physiological signals for HRV analysis are briefly summarized.Furthermore,we highlighted the research on wearable electronics concerning HRV assessment and diverse applications such as stress estimation,drowsiness detection,etc.Lastly,the current limitations of the integrated wearable HRV system are concluded,and possible solutions in such a research direction are outlined.展开更多
基金supported by National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number R21NS114763US Army Medical Research and Materiel Command (USAMRMC) under award#W81XWH-18-1-0773merit-based career enhancement award at the Feinstein Institutes for Medical Research (to CL)
文摘Bioelectronic interventions,specifically trigeminal nerve st imulat ion(TNS),have attracted considerable attention in conditions where cortical spreading depolarizations(CSDs)accompanied by compromised cerebral perfusion may exacerbate neurological damage.While pharmacological interventions have demonstrated initial potential in addressing CSDs,a standardized treatment approach has not yet been established.The objective of this perspective is to explore emerging bioelectronic methodologies for addressing CSDs,particularly emphasizing TNS,and to underscore TNS’s capacity to enhance neurovascular coupling and cerebral perfusion.
基金supported by the National Natural Science Foundation of China(U21A20281)the Special Fund for Young Teachers from Zhengzhou University(JC23557030,JC23257011)+1 种基金the Key Research Projects of Higher Education Institutions of Henan Province(24A530009)the Project of Zhongyuan Critical Metals Laboratory(GJJSGFYQ202336).
文摘Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.
基金supported in part by National Science and Technology Major Project from the Minister of Science and Technology of China(2018AAA0103100).
文摘Heart rate variability(HRV)that can reflect the dynamic balance between the sympathetic nervous and parasympathetic nervous of human autonomic nervous system(ANS)has attracted considerable attention.However,traditional electrocardiogram(ECG)devices for HRV analysis are bulky,and hard wires are needed to attach measuring electrodes to the chest,resulting in the poor wearable experience during the long-term measurement.Compared with that,wearable electronics enabling continuously cardiac signals monitoring and HRV assessment provide a desirable and promising approach for helping subjects determine sleeping issues,cardiovascular diseases,or other threats to physical and mental well-being.Until now,significant progress and advances have been achieved in wearable electronics for HRV monitoring and applications for predicting human physical and mental well-being.In this review,the latest progress in the integration of wearable electronics and HRV analysis as well as practical applications in assessment of human physical and mental health are included.The commonly used methods and physiological signals for HRV analysis are briefly summarized.Furthermore,we highlighted the research on wearable electronics concerning HRV assessment and diverse applications such as stress estimation,drowsiness detection,etc.Lastly,the current limitations of the integrated wearable HRV system are concluded,and possible solutions in such a research direction are outlined.