期刊文献+
共找到763篇文章
< 1 2 39 >
每页显示 20 50 100
Effect of Vibrational Modes on Sand Pressure and Pattern Deformation in the EPC Process
1
作者 A.Ikenaga G.S.Cho +1 位作者 K.H.Choe K.W.Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期326-329,共4页
During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional ci... During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion duringsand filling and compaction. A new method which vibrates the system in a two-dimensional circular mode has been appliedto the EPC process. The molding properties of unbonded sand obtained by this new vibration mode are investigated andcompared with those in the one-dimensional vertical mode. For adequate compaction of sand. the circular vibration mode ismore effective than the vertical mode. Sand became more fluidized by the circular vibration and the particle pressure coefficientwas close to unity The particle pressure coefficient, which is defined as the ratio of horizontal to vertical sand pressure, isresponsible for the effectiveness of sand filling. 展开更多
关键词 epc process Sand compaction vibration mode Pattern deformation Sand pressure
下载PDF
Humidification vibration deformation behavior of intact loess 被引量:1
2
作者 CHENG Da-wei LUO Ya-sheng +2 位作者 WU Cai-ping CHEN Xi GUO Hong 《Journal of Central South University》 SCIE EI CAS 2013年第7期1985-1991,共7页
A parameter, known as the parameter of humidification vibration deformation, was proposed, describing quantitatively the impact of water content on vibration settlement deformation, and its relationship with humidific... A parameter, known as the parameter of humidification vibration deformation, was proposed, describing quantitatively the impact of water content on vibration settlement deformation, and its relationship with humidification water content, dynamic shear stress peak value, initial consolidation stress and vibration frequency was built. The result shows that 1) the parameter of humidification vibration deformation increases with the vibration shear stress peak value increasing. 2) The humidification water content has significant influence on the curve of the parameter of humidification vibration deformation and the peak vibration shear stress. When the humidification water content is low, the curve increases slowly. However, when the humidification water content is high, the curve increases rapidly. 3) Initial consolidation stress has significant influence on the humidification vibration deformation coefficient. When initial consolidation stress is not large enough to destroy the loess structure, with initial consolidation stress increasing, the humidification vibration deformation coefficient decreases. On the contrary, the humidification vibration deformation coefficient increases with initial consolidation stress increasing. 4) With the increase of vibration time, the parameter of humidification vibration settlement shows an increasing trend overall. The initial dynamic shear stress peak value and humidification water content all have significant effects on the curve of the parameter of humidification vibration settlement and vibration time. However, the humidification water content is even more significant. 展开更多
关键词 intact loess vibration deformation humidification vibration deformation coefficient
下载PDF
APPROXIMATE VIBRATION ANALYSIS OF LAMINATED CURVED PANEL USING HIGHER-ORDER SHEAR DEFORMATION THEORY
3
作者 侍建伟 中谷彰宏 北川浩 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第3期238-246,共9页
An approximate analysis for free vibration of a laminated curved panel(shell)with four edges simply supported(SS2),is presented in this paper.The transverse shear deformation is considered by using a higher-order shea... An approximate analysis for free vibration of a laminated curved panel(shell)with four edges simply supported(SS2),is presented in this paper.The transverse shear deformation is considered by using a higher-order shear deformation theory.For solving the highly coupled partial differential governing equations and associated boundary conditions,a set of solution functions in the form of double trigonometric Fourier series,which are required to satisfy the geometry part of the considered boundary conditions,is assumed in advance.By applying the Galerkin procedure both to the governing equations and to the natural boundary conditions not satisfied by the assumed solution functions,an approximate solution,capable of providing a reliable prediction for the global response of the panel,is obtained.Numerical results of antisymmetric angle-ply as well as symmetric cross-ply and angle-ply laminated curved panels are presented and discussed. 展开更多
关键词 curved panel modified Galerkin method higher-order shear deformation transverse shear deformation vibration analysis
下载PDF
Combined deformation of filament-wound cylinder and application to torsion vibration control
4
作者 李玉兰 《Journal of Chongqing University》 CAS 2002年第2期83-85,共3页
The combined deformation and mechanical properties of filament-wound cylinder of filament reinforced composite materials are investigated. A method of using filament-winding composites to reduce the amplitude of torsi... The combined deformation and mechanical properties of filament-wound cylinder of filament reinforced composite materials are investigated. A method of using filament-winding composites to reduce the amplitude of torsion vibration in the case of special stimulated vibration is established. A design formula of anisotropic filament-wound cylinder to reduce the torsion vibration of axle components is obtained. The results indicate that by putting the filament-wound cylinder on an axis, the torsion vibration of the axis can be reduced effectively. 展开更多
关键词 combined deformation coupling ANISOTROPY torsion vibration control
下载PDF
Wind induced deformation and vibration of a Platanus acerifolia leaf 被引量:16
5
作者 Chuan-Ping Shao Ye-Jun Chen Jian-Zhong Lin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期583-594,共12页
Deformation and vibration of twig-connected sin- gle leaf in wind is investigated experimentally. Results show that the Reynolds number based on wind speed and length of leaf blade is a key parameter to the aerodynami... Deformation and vibration of twig-connected sin- gle leaf in wind is investigated experimentally. Results show that the Reynolds number based on wind speed and length of leaf blade is a key parameter to the aerodynamic prob- lem. In case the front surface facing the wind and with an in- crease of Reynolds number, the leaf experiences static defor- mation, large amplitude and low frequency sway, reconfigu- ration to delta wing shape, flapping of tips, high frequency vibration of whole leaf blade, recovery of delta wing shape, and twig-leaf coupling vibration. Abrupt changes from one state to another occur at critical Reynolds numbers. In case the back surface facing the wind, the large amplitude and low frequency sway does not occur, the recovered delta wing shape is replaced by a conic shape, and the critical Reynolds numbers of vibrations are higher than the ones correspond- ing to the case with the front surface facing the wind. A pair of ram-horn vortex is observed behind the delta wing shaped leaf. A single vortex is found downstream of the conic shaped leaf. A lift is induced by the vortex, and this lift helps leaf to adjust position and posture, stabilize blade distortion and reduce drag and vibration. 展开更多
关键词 Tree leaf. Wind. deformation vibration
下载PDF
Severe Plastic Deformation of Steel Induced by Ultrasonic Vibrations 被引量:2
6
作者 C. Xu Y. Cui Q. Han 《Open Journal of Metal》 2013年第1期1-5,共5页
High-intensity ultrasonic vibration was focused on the tip of conical steel specimens to induce severe plastic deformation at room temperature. We found, for the first time, that grain size smaller than 200 nm was obt... High-intensity ultrasonic vibration was focused on the tip of conical steel specimens to induce severe plastic deformation at room temperature. We found, for the first time, that grain size smaller than 200 nm was obtained. Furthermore, the sharp tip of the conical specimen became umbrella-shaped or disk-shaped. The tip size changed from 0.5 mm diameter to a disk about 5 mm diameter, representing a large amount of plastic deformation in the metal at the tip of the conical specimen. 展开更多
关键词 SEVERE PLASTIC deformation NANOSTRUCTURED Materials ULTRASONIC vibration
下载PDF
Effects of solid deformation and melt vibration on structure and refining performance of Al5Ti1B master alloy
7
作者 亓效刚 刘相法 +2 位作者 边秀房 王大庆 马家骥 《中国有色金属学会会刊:英文版》 CSCD 2000年第1期80-83,共4页
Grain refinement can offer significant benefits to both continuous casting and cast to shape products, and Al5Ti1B master alloy containing mainly TiAl 3 and TiB 2 particles in Al matrix has been proven to perform well... Grain refinement can offer significant benefits to both continuous casting and cast to shape products, and Al5Ti1B master alloy containing mainly TiAl 3 and TiB 2 particles in Al matrix has been proven to perform well for giving the best refinement, but the working method of adding Al5Ti1B rod to the furnace during casting are often related to solid deformation, and melt vibration may help to reduce the size of TiAl 3 and improve the distribution of TiB 2. Therefore the effects of solid deformation and melt vibration on the structures and refinement performance of Al5Ti1B master alloys were studied. The experimental results show that both solid deformation and melt vibration can improve the distribution of TiB 2 in Al5Ti1B master alloys, increase the interface energy and nucleation activity of TiB 2 particles. In the meantime, solid deformation can store deformation energy and melt vibration can break fragile plate like TiAl 3 compounds. So both methods can improve the refinement effectiveness of Al5Ti1B master alloys. 展开更多
关键词 Al5Ti1B MASTER alloy SOLID deformation MELT vibration
下载PDF
Microtubule Biomechanical Properties under Deformation and Vibration
8
作者 Ramana Pidaparti Jongwon Kim 《Journal of Biomedical Science and Engineering》 2022年第1期36-43,共8页
Microtubules (MT) are of great engineering importance due to their potential applications as sensors, actuators, drug delivery, and others. The MT properties/mechanics are greatly affected by their biomechanical envir... Microtubules (MT) are of great engineering importance due to their potential applications as sensors, actuators, drug delivery, and others. The MT properties/mechanics are greatly affected by their biomechanical environment and it is important to understand their biological function. Although microtubule mechanics has been extensively studied statically, very limited studies are devoted to the biomechanical properties of microtubule undergoing deformation and vibration. In this study, we investigate the biomechanical properties of the microtubule under bending deformation and free vibration using 3D finite element analysis. Results of force-deformation and vibration frequencies and mode shapes obtained from the finite element analysis are presented. The results indicate that the force-deformation characteristics vary with time/phases and become non-linear at higher time intervals. The modes of MT vibration and frequencies are in the GHz range and higher modes will involve combined bending, torsion and axial deformations. These higher modes and shapes change their deformation which might have implications for physiological and biological behavior, especially for sensing and actuation and communication to cells. The bending force-deformation characteristics and vibration modes and frequencies should help further understand the biomechanical properties of self-assembled microtubules. 展开更多
关键词 MICROTUBULE vibration deformation Finite Element Method Biomechanical Properties
下载PDF
Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium
9
作者 Quoc-Hoa Pham Van Ke Tran Phu-Cuong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期77-99,共23页
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ... An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums. 展开更多
关键词 Plate-fluid contact Galerkin Vlasov's method Multi-directional functionally graded plate Novel porosity Thermal vibration Refined higher-order shear deformation theory
下载PDF
Size-dependent thermomechanical vibration characteristics of rotating pre-twisted functionally graded shear deformable microbeams
10
作者 Songye JIN Bo ZHANG +4 位作者 Wuyuan ZHANG Yuxing WANG Huoming SHEN Jing WANG Juan LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1015-1032,共18页
A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress the... A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC). 展开更多
关键词 thermomechanical vibration rotating pre-twisted functionally graded(FG)microbeam refined shear deformation theory(RSDT) modified couple stress theory(MCST) modal assurance criterion(MAC)
下载PDF
Vibration Deformation Monitoring of Offshore Wind Turbines Based on GBIR 被引量:2
11
作者 MA Deming LI Yongsheng +2 位作者 LIU Yanxiong CAI Jianwei ZHAO Rui 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第3期501-511,共11页
In view of the disadvantages of vibration safety monitoring technology for offshore wind turbines,a new method is proposed to obtain deformation information of towering and dynamic targets in real-time by the ground-b... In view of the disadvantages of vibration safety monitoring technology for offshore wind turbines,a new method is proposed to obtain deformation information of towering and dynamic targets in real-time by the ground-based interferometric ra-dar(GBIR).First,the working principle and unique advantages of the GBIR system are introduced.Second,the offshore wind turbines in Rongcheng,Shandong Province are selected as the monitoring objects for vibration safety monitoring,and the GPRI-II portable radar interferometer is used for the health diagnosis of these wind turbines.Finally,the interpretation method and key processing flow of data acquisition are described in detail.This experiment shows that the GBIR system can accurately identify the millimeter-scale vibration deformation of offshore wind turbines and can quickly obtain overall time series deformation images of the target bodies,which demonstrate the high-precision deformation monitoring ability of the GBIR technology.The accuracy meets the requirements of wind turbine vibration monitoring,and the method is an effective spatial deformation monitoring means for high-rise and dynamic targets.This study is beneficial for the further enrichment and improvement of the technical system of wind turbine vibration safety monitoring in China.It also provides data and technical support for offshore power engineering management and control,health diagnosis,and disaster prevention and mitigation. 展开更多
关键词 wind turbine vibration deformation monitoring GBIR key technology technology support
下载PDF
Elliptical vibration chiseling:a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface
12
作者 Zhiwei Li Jianfu Zhang +3 位作者 Zhongpeng Zheng Pingfa Feng Dingwen Yu Jianjian Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期449-467,共19页
High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effect... High-aspect-ratio metallic surface microstructures are increasingly demanded in breakthrough applications,such as high-performance heat transfer enhancement and surface plasmon devices.However,the fast and cost-effective fabrication of high-aspect-ratio microstructures on metallic surfaces remains challenging for existing techniques.This study proposes a novel cutting-based process,namely elliptical vibration chiseling(EV-chiseling),for the high-efficiency texturing of surface microstructures with an ultrahigh aspect ratio.Unlike conventional cutting,EV-chiseling superimposes a microscale EV on a backward-moving tool.The tool chisels into the material in each vibration cycle to generate an upright chip with a high aspect ratio through material deformation.Thanks to the tool’s backward movement,the chip is left on the material surface to form a microstructure rather than falling off.Since one microstructure is generated in one vibration cycle,the process can be highly efficient using ultrafast(>1 kHz)tool vibration.A finite element analysis model is established to explore the process mechanics of EV-chiseling.Next,a mechanistic model of the microstructured surface generation is developed to describe the microstructures’aspect ratio dependency on the process parameters.Then,surface texturing tests are performed on copper to verify the efficacy of EV-chiseling.Uniformed micro ribs with a spacing of 1–10μm and an aspect ratio of 2–5 have been successfully textured on copper.Compared with the conventional EV-cutting that uses a forward-moving tool,EV-chiseling can improve the aspect ratio of textured microstructure by up to 40 times.The experimental results also verify the accuracy of the developed surface generation model of microstructures.Finally,the effects of elliptical trajectory,depth of cut,tool shape,and tool edge radius on the surface generation of micro ribs have been discussed. 展开更多
关键词 metallic microstructure high aspect ratio backward-moving cutting vibration cutting chiseling material deformation
下载PDF
Effect of ultrasonic vibration on the friction stir weld quality of aluminium alloy 被引量:7
13
作者 刘小超 武传松 +1 位作者 张皓庭 陈茂爱 《China Welding》 EI CAS 2013年第3期12-17,共6页
A novel variant of friction stir welding process, referred as ultrasonic vibration enhanced friction stir welding, is developed to transmit ultrasonic vibration energy directly into the localized area of the workpiece... A novel variant of friction stir welding process, referred as ultrasonic vibration enhanced friction stir welding, is developed to transmit ultrasonic vibration energy directly into the localized area of the workpiece near and ahead of the rotating tool. Experiments are conducted on 6061-T4 aluminium alloy plates by this new process and the conventional friction stir welding process, respectively. The morphology and macrograph of the welds under both conditions are observed and contrasted. The experimental results show that ultrasonic vibration enhanced friction stir welding can improve the weld formation quality and increase the welding efficiency. And it just needs a smaller axial downward force. Because that the added action of ultrasonic vibration energy may enhance the localized softening extent and the plastic flow around the tool. In addition, it also improves the mechanical properties of the welded joints. 展开更多
关键词 ultrasonic vibration friction stir welding enhanced plastic deformation
下载PDF
Analysis of free vibration characteristic of steel-concrete composite box-girder considering shear lag and slip 被引量:9
14
作者 周旺保 蒋丽忠 余志武 《Journal of Central South University》 SCIE EI CAS 2013年第9期2570-2577,共8页
Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated st... Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated stress,shear deformation,slip,as well as rotational inertia were induced.Therefore,natural frequency equations were obtained for the boundary types,such as simple support,cantilever,continuous girder and fixed support at two ends.The ANSYS finite element solutions were compared with the analytical solutions by calculation examples and the validity of the proposed approach was verified,which also shows the correctness of longitudinal warping displacement functions.Some meaningful conclusions for engineering design were obtained.The decrease extent of each order natural frequency of the steel-concrete composite box-girder is great under action of the shear lag effect.The shear-lag effect of steel-concrete composite box girder increases when frequency order rises,and increases while span-width ratio decreases.The proposed approach provides theoretical basis for further research of free vibration characteristics of steel-concrete composite box-girder. 展开更多
关键词 steel-concrete composite box-girder shear lag effect shear deformation SLIP free vibration
下载PDF
Comprehensive modeling approach of axial ultrasonic vibration grinding force 被引量:2
15
作者 何玉辉 周群 +1 位作者 周剑杰 郎献军 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期562-569,共8页
The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl... The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified. 展开更多
关键词 cutting deformation force ultrasonic vibration assisted grinding (UVAG) regression equation comprehensive modeling
下载PDF
Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory 被引量:2
16
作者 Pham Van Vinh Le Quang Huy 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期490-508,共19页
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi... This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。 展开更多
关键词 Functionally graded sandwich plates Porous plates Hyperbolic shear deformation theory Bending analysis Free vibration analysis Buckling analysis
下载PDF
Plastic deformation of magnesium alloy with different forming parameters during ultrasonic vibration-assisted single-point incremental forming 被引量:1
17
作者 Chun Jian Su Ting Ting Xu +3 位作者 Ke Zhang Ke Zhang Shu Mei Lou Qing Wang 《Rare Metals》 SCIE EI CAS CSCD 2022年第11期3878-3886,共9页
The research of forming parameters on the ultrasonic vibration single-point incremental forming of magnesium alloy plastic deformation can provide a theoretical basis for the establishment of the forming parameters.Ac... The research of forming parameters on the ultrasonic vibration single-point incremental forming of magnesium alloy plastic deformation can provide a theoretical basis for the establishment of the forming parameters.According to the forming characteristics of magnesium alloy sheet,a new method of ultrasonic vibration-as sis ted single-point incremental forming was proposed.The influence of forming parameters on the plastic deformation of magnesium alloy was studied by finite element simulation and experimentation.The influence of vibration frequency,amplitude,friction coefficient,and tool head size on stress and thinning rate of magnesium alloy during ultrasonic vibration-as sis ted single-point asymptotic forming was studied.The results show that the vibration frequency of 20 kHz and forming tool radius of about 5 mm are beneficial for plastic deformation magnesium alloy in ultrasonic vibration-assisted single-point incremental forming.With vibration amplitude increasing,the maximum shear stress tends to decrease as a whole,but at the amplitude of 0.16 mm,the thinning rate is large and fracture occurs easily.With friction coefficient increasing,the maximum shear stress tends to increase,and there is a good linear relationship between the maximum thinning rate and the friction coefficient. 展开更多
关键词 Magnesium alloy Ultrasonic vibration Incremental forming Forming parameters Plastic deformation
原文传递
Analytical modelling and free vibration analysis of piezoelectric bimorphs 被引量:1
18
作者 周燕国 陈云敏 丁皓江 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第9期938-944,共7页
An efficient and accurate analytical model for piezoelectric bimorph based on the improved first-order shear deformation theory (FSDT) is developed in this work. The model combines the equivalent single-layer approa... An efficient and accurate analytical model for piezoelectric bimorph based on the improved first-order shear deformation theory (FSDT) is developed in this work. The model combines the equivalent single-layer approach for mechanical displacements and a layerwise-type modelling of the electric potential. Particular attention is devoted to the boundary conditions on the outside faces and to the interface continuity conditions of the bimorphs for the electromechanical variables. Shear correction factor (k) is introduced to modilfy both the shear stress and the electric displacement of each layer. And the detailed mathematical derivations are presented. Free vibration problem of simply supported piezoelectric bimorphs with series or parallel arrangement is investigated for the closed circuit condition, and the results for different length-to-thickness ratios are compared with those obtained from the exact 2D solution. Excellent agreements between the present model prediction with k=-8/9 and the exact solutions are observed for the resonant frequencies. 展开更多
关键词 Piezoelectric bimorph Analytical model Free vibration Shear correction factor First-order shear deformation theory
下载PDF
Effect of different geometrical non-uniformities on nonlinear vibration of porous functionally graded skew plates: A finite element study
19
作者 H.S.Naveen Kumar Subhaschandra Kattimani 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期918-936,共19页
This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the s... This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the structural design.The TPFGS plate is analyzed considering linearly,bi-linearly,and exponentially varying thicknesses.The plate’s effective material properties are tailor-made using a modified power-law distribution in which gradation varies along the thickness direction of the TPFGS plate.Incorporating the non-linear finite element formulation to develop the kinematic equation’s displacement model for the TPFGS plate is based on the first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinearity.The nonlinear governing equations are established by Hamilton’s principle.The direct iterative method is adopted to solve the nonlinear mathematical relations to obtain the nonlinear frequencies.The influence of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the TPFGS plate for different skew angles and variable thicknesses are studied for various geometrical parameters.The influence of taper ratio,variable thickness,skewness,porosity distributions,gradation,and boundary conditions on the plate’s nonlinear vibration is demonstrated.The nonlinear frequency analysis reveals that the geometrical nonuniformities and porosities significantly influence the porous functionally graded plates with varying thickness than the uniform thickness.Besides,exponentially and linearly variable thicknesses can be considered for the thickness optimizations of TPFGS plates in the structural design. 展开更多
关键词 Functionally graded material Shear deformation theory Porosity distributions Variable thickness Geometrical skewness Nonlinear free vibration
下载PDF
Free Vibration Analysis of FG-CNTRC Cylindrical Pressure Vessels Resting on Pasternak Foundation with Various Boundary Conditions
20
作者 Mohammad Arefi Masoud Mohammadi +1 位作者 Ali Tabatabaeian Timon Rabczuk 《Computers, Materials & Continua》 SCIE EI 2020年第3期1001-1023,共23页
This study focuses on vibration analysis of cylindrical pressure vessels constructed by functionally graded carbon nanotube reinforced composites(FG-CNTRC).The vessel is under internal pressure and surrounded by a Pas... This study focuses on vibration analysis of cylindrical pressure vessels constructed by functionally graded carbon nanotube reinforced composites(FG-CNTRC).The vessel is under internal pressure and surrounded by a Pasternak foundation.This investigation was founded based on two-dimensional elastic analysis and used Hamilton’s principle to drive the governing equations.The deformations and effective-mechanical properties of the reinforced structure were elicited from the first-order shear theory(FSDT)and rule of mixture,respectively.The main goal of this study is to show the effects of various design parameters such as boundary conditions,reinforcement distribution,foundation parameters,and aspect ratio on the free vibration characteristics of the structure. 展开更多
关键词 FG-CNTRC cylindrical pressure vessel first-ordershear deformation theory free vibration Pasternak’s foundation rule of mixture
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部