Coronaviruses are widespread in nature and can infect mammals and poultry,making them a public health concern.Globally,prevention and control of emerging and re-emerging animal coronaviruses is a great challenge.The m...Coronaviruses are widespread in nature and can infect mammals and poultry,making them a public health concern.Globally,prevention and control of emerging and re-emerging animal coronaviruses is a great challenge.The mecha-nisms of virus-mediated immune responses have important implications for research on virus prevention and control.The antigenic epitope is a chemical group capable of stimulating the production of antibodies or sensitized lympho-cytes,playing an important role in antiviral immune responses.Thus,it can shed light on the development of diagnos-tic methods and novel vaccines.Here,we have reviewed advances in animal coronavirus antigenic epitope research,aiming to provide a reference for the prevention and control of animal and human coronaviruses.展开更多
Mango(Mangifera indica L.)is a tropical fruit that is widely consumed as both fresh fruits and processed products around the world.The high incidence of mango allergy,on the other hand,has sparked widespread concern.T...Mango(Mangifera indica L.)is a tropical fruit that is widely consumed as both fresh fruits and processed products around the world.The high incidence of mango allergy,on the other hand,has sparked widespread concern.Therefore,a summary and analysis of the current status and issues in mango allergen research can guide in-depth study on the mechanism of mango allergy and reveal effective desensitization methods.We described the incidence of fruit allergy,as well as the mechanism and clinical symptoms of mango allergy,in this review.We also looked into the structural properties of mango allergens,the effect of processing methods on mango allergens,prediction methods for mango allergen epitopes,and the current state of research on mango cross-reactive allergens and preventive measures.Finally,the research directions and ideas for the future are proposed and discussed.展开更多
African swine fever virus(ASFV)is a lethal pathogen that causes severe threats to the global swine industry and it has already had catastrophic socio-economic effects.To date,no licensed prophylactic vaccine exists.Li...African swine fever virus(ASFV)is a lethal pathogen that causes severe threats to the global swine industry and it has already had catastrophic socio-economic effects.To date,no licensed prophylactic vaccine exists.Limited knowledge exists about the major immunogens of ASFV and the epitope mapping of the key antigens.As such,there is a considerable requirement to understand the functional monoclonal antibodies(mAbs)and the epitope mapping may be of utmost importance in our understanding of immune responses and designing improved vaccines,therapeutics,and diagnostics.In this study,we generated an ASFV antibody phage-display library from ASFV convalescent swine PBMCs,further screened a specific ASFV major capsid protein(p72)single-chain antibody and fused with an IgG Fc fragment(scFv-83-Fc),which is a specific recognition antibody against ASFV Pig/HLJ/2018 strain.Using the scFv-83-Fc mAb,we selected a conserved epitope peptide(221MTGYKH226)of p72 retrieved from a phage-displayed random peptide library.Moreover,flow cytometry and cell uptake experiments demonstrated that the epitope peptide can significantly promote BMDCs maturation in vitro and could be effectively uptaken by DCs,which indicated its potential application in vaccine and diagnostic reagent development.Overall,this study provided a valuable platform for identifying targets for ASFV vaccine development,as well as to facilitate the optimization design of subunit vaccine and diagnostic reagents.展开更多
Quail egg ovomucoid can inhibit activation of basophils and eosinophils,while hen egg ovomucoid has been shown to be a major allergen,named Gal d 1.At present,the differences in structure and function between two ovom...Quail egg ovomucoid can inhibit activation of basophils and eosinophils,while hen egg ovomucoid has been shown to be a major allergen,named Gal d 1.At present,the differences in structure and function between two ovomucoid are unclear.We found the homology of ovomucoid in quail eggs and hen eggs reached77%.Compared with hen egg ovomucoid,the distribution of secondary structure was different in AA52-53,AA57-58,AA66-68,AA71-72,AA131-133,AA139-140,AA157-159 and AA184-185.Among 9 epitopes of egg ovomucoid,there were different amino acids from quail egg ovomucoid in 8 epitopes.Recombination quail egg ovomucoid had trypsin inhibition activity and quail egg ovomucoid didn't specifically bind to serum of eggs allergic patients.Quail egg ovomucoid can significantly inhibit RBL-2 H3 cells degranulation and protect cells morphology to a certain extent,indicating quail egg ovomucoid can inhibit cells activation and have potential anti-allergic effects,which is related to trypsin inhibitory activity.The difference in sensitization compare to hen egg ovomucoid may be due to amino acids differences affecting protein structure by changing antigenic epitopes.展开更多
Here,a new integrated machine learning and Chou’s pseudo amino acid composition method has been proposed for in silico epitope mapping of severe acute respiratorysyndrome-like coronavirus antigens.For this,a training...Here,a new integrated machine learning and Chou’s pseudo amino acid composition method has been proposed for in silico epitope mapping of severe acute respiratorysyndrome-like coronavirus antigens.For this,a training dataset including 266 linear B-cell epitopes,1,267 T-cell epitopes and 1,280 non-epitopes were prepared.The epitope sequences were then converted to numerical vectors using Chou’s pseudo amino acid composition method.The vectors were then introduced to the support vector machine,random forest,artificial neural network,and K-nearest neighbor algorithms for the classification process.The algorithm with the highest performance was selected for the epitope mapping procedure.Based on the obtained results,the random forest algorithm was the most accurate classifier with an accuracy of 0.934 followed by K-nearest neighbor,artificial neural network,and support vector machine respectively.Furthermore,the efficacies of predicted epitopes by the trained random forest algorithm were assessed through their antigenicity potential as well as affinity to human B cell receptor and MHC-I/II alleles using the VaxiJen score and molecular docking,respectively.It was also clear that the predicted epitopes especially the B-cell epitopes had high antigenicity potentials and good affinities to the protein targets.According to the results,the suggested method can be considered for developing specific epitope predictor software as well as an accelerator pipeline for designing serotype independent vaccine against the virus.展开更多
[ Objective] The aim was to predict the secondary structure and B cell epitope of growth hormone (GH) protein from Acipenser sinensis. [Method] With the amino acid sequence of GH protein from A. sinensis as the base...[ Objective] The aim was to predict the secondary structure and B cell epitope of growth hormone (GH) protein from Acipenser sinensis. [Method] With the amino acid sequence of GH protein from A. sinensis as the base, the secondary structure of GH protein from A. sinensis was predicted by the method of Gamier-Robson, Chou-Fasman and Karpius-Schulz, and its cell epitope was predicted by the method of Kyte- Doolittle, Emini and Jameson-Wolf. [Result] The sections of 18 -23, 55 -55, 67 -73, 83 -86,112 -114,151 -157 and 209 -211 in the N terminal of GH protein molecule had softer structure and these sections could sway or fold to produce more complex tertiary structure. The sections of 19 -23, 51 -71,84 -95, 128 -139, 164 -176 and 189 -195 in the N terminal of GH protein could be the epitope of B cell and there were flexible regions in these sections or near these sections of GH protein molecule. So the dominant regions could be in these sections or near these sections. [ Conclusion] The research provided the basis for the preparation of monoctonal antibody of GH protein from A. sinensis and provided the reference for the discussion for the molecular regulation mechanism of A. sinensis.展开更多
[Objective] The B cell epitopes for VP73 protein of African swine fever virus was predicted. [ Method] Based on the analysis of the amino acid sequence and the flexible regions of VP73 protein, the B cell epitopes for...[Objective] The B cell epitopes for VP73 protein of African swine fever virus was predicted. [ Method] Based on the analysis of the amino acid sequence and the flexible regions of VP73 protein, the B cell epitopes for VP73 protein of African swine fever virus were predicted by method of Kyte-Doolittie, Emini and Jameson-Wolf. [Result] The B cell epitopes were located at or adjacent to the N-terminal No. 11 - 18,26 -48,73 -82,136 - 150,159 - 174,181 - 189,191 - 210,247 - 276,279 - 295,313 - 323 and 382 - 392. [Conclusion] The multi-parameters analytic method was adopted to predict the B cell epitopes for VP73 protein of African swine fever virus, which laid solid foundation for further characterizing the protein of VP73 and researching epitope vaccine.展开更多
[Objective] The research aimed to predict the B cell epitope of DMRT protein in Oreochromis niloticus. [Method] The secondary structure of amino acid sequence of DMRT protein was revealed by Garnier-Robson, Chou-Fasma...[Objective] The research aimed to predict the B cell epitope of DMRT protein in Oreochromis niloticus. [Method] The secondary structure of amino acid sequence of DMRT protein was revealed by Garnier-Robson, Chou-Fasman and Karplus-Schulz methods. The hydrophilicity plot, surface probability and antigenic index were obtained by Kyte-Doolittle, Emini and Jameson-Wolf methods, respectively. Based on the above results, the B cell epitopes for DMRT were predicted. [Result] Both the prediction results from Garnier-Robson, Chou-Fasman methods indicated that the α-helix centers of DMRT protein in O. niloticus were in the N terminal No. 31-56, 68-75, 110-116, 209-211 and 239-243; the β-sheet centers of DMRT protein in O. niloticus were in the N terminal No. 95-99, 177-183, 225-234 and 251-254. With the assistant of Kyte-Doolittle, Emini and Jameson-Wolf methods, the B cell epitopes for DMRT were located in or nearby the N terminal No. 13-16, 35-38, 47-54,84-93, 101-109, 127-156, 166-177 and 198-201. [Conclusion] These results are helpful for preparing the antibody of DMRT protein and revealing the sex determination mechanism of O. niloticus.展开更多
[Objective] This study aimed to predict the structural characteristics of Bt Cry2Ab protein in transgenic crops with bioinformatic analysis to provide the theoretical clues for design of antibody Cry2Ab. [Method] The ...[Objective] This study aimed to predict the structural characteristics of Bt Cry2Ab protein in transgenic crops with bioinformatic analysis to provide the theoretical clues for design of antibody Cry2Ab. [Method] The amino acid sequence of Cry2Ab protein was searched from NCBI database. The B cell epitopes were predicted with DNAStar. The binding affinity between Cry2Ab protein and MHC-II molecules was analyzed with NetMHCII 2.2 Server to predict the T cell epitopes. [Result] Prediction result suggested the potential B cell epitope of Cry2Ab locating in the region of 208-215. Analysis of the binding affinity between Cry2Ab and MHC-II molecules suggested the regions of 177-185, 299-307 and 255-263 were the potential T cell epitopes. Human with HLA-DRB10101 alleles and HLA-DRB10701 alleles were more sensitive to Cry2Ab protein. [Conclusion] This study facilitates to understand the structural characteristics of Cry2Ab protein and provides a new clue to improve the assessment method for potential allergenicity of genetically modified food.展开更多
In recent years,the in silico epitopes prediction tools have facilitated the progress of vaccines development significantly and many have been applied to predict epitopes in viruses successfully. Herein,a general over...In recent years,the in silico epitopes prediction tools have facilitated the progress of vaccines development significantly and many have been applied to predict epitopes in viruses successfully. Herein,a general overview of different tools currently available,including T cell and B cell epitopes prediction tools,is presented. And the principles of different prediction algorithms are reviewed briefly. Finally,several examples are present to illustrate the application of the prediction tools.展开更多
AIM: To construct and highly express an epitope of hepatitis C virus (HCV) in a foreign epitope presenting vector based on an insect virus, and to study the antigenicity of the epitope. METHODS: The HCV epitope sequen...AIM: To construct and highly express an epitope of hepatitis C virus (HCV) in a foreign epitope presenting vector based on an insect virus, and to study the antigenicity of the epitope. METHODS: The HCV epitope sequence (amino acid residues 315 to 328: EGHRMAWDMMMNWS) of the El region was constructed at different positions of a foreign epitope presenting vector based on an insect virus, flock house virus (FHV) capsid protein encoding gene as a vector, and expressed in E. coli cells. Western blotting and ELISA were used to detect the immunoreactivity of these recombinant proteins. RESULTS: The gene encoding of the concerned B-cell epitope of HCV El envelope protein was expressed on FHV capsid carrier protein at positions I1 (aa 106), 12 (aa 153) and 13 (aa 305), respectively, on the surface of FHV capsid protein. The recombinant proteins in this system could be highly expressed in more than 40% of total cell protein of E. coli BL21. All the expressed recombinant proteins were in inclusion body form, and showed obvious immunoreactivity by Western blotting. Further purified recombinant proteins were detected by indirect ELISA as coating antigen respectively. All recombinant proteins could still show immunoreactivity. CONCLUSION: The epitope of HCV El envelope protein can be highly expressed in FHV carrier system as a chimeric protein with high immunoreactivity. This system has multiple entry sites conferring many possible conformations closer to the native one for a given sequence.展开更多
Objective To identify epitope relating to BAC 5 mcAb, a kind of monoclonal antibody (mcAb) located on the surface of nasopharyngeal carcinoma (NPC) cells. Methods Using BAC 5 mcAb as a selected target, the 3 rou...Objective To identify epitope relating to BAC 5 mcAb, a kind of monoclonal antibody (mcAb) located on the surface of nasopharyngeal carcinoma (NPC) cells. Methods Using BAC 5 mcAb as a selected target, the 3 rounds of biopanning to a 12 mer random peptide library (RPL) presented by M13 phages were carried out. The positive M13 phage clones were chosen and confirmed with sandwich ELISA for antibody capture and competitive assay. The exogenous DNA fragments in the positive/negative M13 phages were sequenced to deduce and compare the order of the amino acids of exogenous peptides among the phage clones. Results 77% (35/45) of the phages eluted from the 3rd round of biopnning could be captured by BAC 5 mcAb. The 3 kinds of the peptides were displayed by M13 phages from the 8 positive clones identified with competitive assay. The same character of '-P-V-'structure existed near N-terminus of the 3 different peptides, i.e. -H-Q-S-H-Y-P-Y-P-V-V-S-L- (4/8) -Q-N-Q-A-W-F-S-Q-P-V-R-M- (3/8) and T-Q-A-Y-K-G-F-P-V-L-P-S- (1/8) in comparison with the peptide ' -N-H-Q-S-T-F-W-Q-K-W-T-A-' displayed by M13 phages from the negative clones (6/6). Conclusion BAC 5 mcAb can recognize the 3 kinds of the peptides with-P-V-structure near N-terminus. These peptides mimic the structure of the epitope on the surface of NPC cells recognized by BAC 5 mcAb.展开更多
[Objective] This study aimed to develop an indirect ELISA to detect the antibodies against Actinobacil us pleuropneumoniae (APP) using the recombinant ApxⅡA1 protein expressed in prokaryotic cells as the antigen. [...[Objective] This study aimed to develop an indirect ELISA to detect the antibodies against Actinobacil us pleuropneumoniae (APP) using the recombinant ApxⅡA1 protein expressed in prokaryotic cells as the antigen. [Method] The major epi-tope domain of ApxⅡ was cloned into the prokaryotic expression vector pET-28a (+) to obtain the recombinant plasmid pET-ApxⅡA1, which was then transformed into E. coli BL21 (DE3) for expression. The immunogenicity of the recombinant pro-tein was analyzed by western-blotting. After that, the purified recombinant protein was used as the coating antigen in the indirect ELISA for detecting the antibodies against APP. Final y, the concentration of coated antigen and the dilution of serum were optimized. [Result] Proved by enzyme digestion and sequencing, the recombi-nant plasmid pET-ApxⅡA1 was constructed successful y. The recombinant protein was highly expressed in prokaryotic cells, and Western-blotting analysis showed that it was recognized specifical y by positive serum of APP. The indirect ELISA could detect the antibody against APP with the purified recombinant protein as the coating antigen. The optimal concentration of coated antigen was 1.23 μg/ml and the opti-mal dilution of serum was 1:100. Compared with a commercial ELISA kit detecting antibody against ApxⅣ, the coincidence rate of the indirect ELISA was 90.4%. [Conclusion] Our results indicated that the indirect ELISA is sensitive and specific, and suitable for evaluating the effect of APP vaccine and epidemiological surveys.展开更多
Objective: To explore RNA dependent RNA polymerase of Chikungunya virus(CHIKV) and develop T cell based epitopes with high antigenicity and good binding affinity for the human leukocyte antigen(HLA) classes as targets...Objective: To explore RNA dependent RNA polymerase of Chikungunya virus(CHIKV) and develop T cell based epitopes with high antigenicity and good binding affinity for the human leukocyte antigen(HLA) classes as targets for epitopes based CHIKV vaccine. Methods: In this study we downloaded 371 non-structural protein 4 protein sequences of CHIKV belonging to different regions of the world from the US National Institute of Allergy and Infectious Diseases(NIAID) virus pathogen resource database. All the sequences were aligned by using CLUSTALW software and a consensus sequence was developed by using Uni Pro U Gene Software version 1.2.1. PropredⅠand Propred software were used to predict HLAⅠ and HLAⅡ binding promiscuous epitopes from the consensus sequence of non-structural protein 4 protein. The predicted epitopes were analyzed to determine their antigenicity through Vaxijen server version 2.0. All the HLAⅠ binding epitopes were scanned to determine their immunogenic potential through the Immune Epitope Database(IEDB). All the predicted epitopes of our study were fed to IEDB database to determine whether they had been tested earlier. Results: Twenty two HLA class Ⅱ epitopes and eight HLA classⅠepitopes were predicted. The promiscuous epitopes WMNMEVKII at position 486–494 and VRRLNAVLL at 331–339 were found to bind with 37 and 36 of the 51 HLA class Ⅱ alleles respectively. Epitope MANRSRYQS at position 58–66 and epitopes YQSRKVENM at positions 64–72 were predicted to bind with 12 and 9 HLAⅠI alleles with antigenicity scores of 0.754 9 and 1.013 0 respectively. Epitope YSPPINVRL was predicted to bind 18 HLAⅠ alleles and its antigenicity score was 1.425 9 and immunogenicity score was 0.173 83. This epitope is very useful in the preparation of a universal vaccine against CHIKV infection. Conclusions: Epitopes reported in this study showed promiscuity, antigenicity as well as good binding affinity for the HLA classes. These epitopes will provide the baseline for development of efficacious vaccine for CHIKV.展开更多
[Objective] To predict the secondary structure and B cell epitopes of the rice major allergen RAG1. [Method] The amino acid sequence of rice allergen RAG1 was acquired from Expasy protein database. The secondary struc...[Objective] To predict the secondary structure and B cell epitopes of the rice major allergen RAG1. [Method] The amino acid sequence of rice allergen RAG1 was acquired from Expasy protein database. The secondary structure of RAG1 was predicted by DNAStar Protean software with Gamier-Robson program, Chou-Fasman program and Karplus-Schulz program; the B cell epitopes of RAG1 was predicted with the Kyte Doolittle hydrophilic program, Emini surface accessibility program and Jameson-Wolf antigenic index program. [Result] The predictions on secondary structure and B cell epitopes showed that the regions of 33-44, 119-129, 155-163 were the dominant B cell epitopes. [Conclusion] This study predicted the potential dominant B cell epitopes in rice allergen RAG1 by comprehensive use of multi-methods and multi-parameters, and provided a theoretical basis for further researches on identification, antigen modification and epitope vaccine design of RAG1 B cell epitopes.展开更多
A novel coronavirus, severe acute respiratory syndrome (SA RS)-associated coronavirus (SARS-CoV), has been identified as the causal agent of SARS. Spike (S) protein is a major structural glycoprotein of the SARS virus...A novel coronavirus, severe acute respiratory syndrome (SA RS)-associated coronavirus (SARS-CoV), has been identified as the causal agent of SARS. Spike (S) protein is a major structural glycoprotein of the SARS virus and a potential target for SARS-specific cell-mediated immune responses. A pa nel of S protein-derived peptides was tested for their binding affinity to HLA -A *0201 molecules. Peptides with high affinity for HLA-A *0201 were then as se ssed for their capacity to elicit specific immune responses mediated by cytotoxi c T lymphocytes (CTLs) both in vivo, in HLA-A2.1/K b transgenic mice, a nd in vitro, from peripheral blood lymphocytes (PBLs) harvested from healthy HLA-A 2.1 + donors. SARS-CoV protein-derived peptide-1 (SSp-1 RLNEVAKNL), induced pepti de-specific CTLs both in vivo (transgenic mice) and in vitro (human PBL s), which specifically released interferon-gamma (IFN-gamma) upon stimulation with SSp-1-pulsed autologous dendritic cells (DCs) or T2 cells. SSp-1-specif ic CTLs also lysed major histocompatibility complex (MHC)-matched tumor cell lines engineered to express S proteins. HLA-A *0201-SSp-1 tetramer staining re vealed the presence of significant populations of SSp-1-specific CTLs in SSp- 1-induced CD8 + T cells. We propose that the newly identified epitope SSp-1 w ill help in the characterization of virus control mechanisms and immunopathology in SARS-CoV infection, and may be relevant to the development of immunotherape utic approaches for SARS.展开更多
The nueleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. In this study, two epitopes (Nl and N2) of the N protein of SARS-CoV were predicted by bio...The nueleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. In this study, two epitopes (Nl and N2) of the N protein of SARS-CoV were predicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodies were isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-induced polyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SAR,S-CoV. Furthermore, it was confirmed that Nl peptide-specific IgG antibodies were detectable in the sera of severe acute respiratory syndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified and N protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.展开更多
AIM:To search for further immunodominant peptides of the pyruvate dehydrogenase complex E2-component (PDC-E2) recognized by antimitochondrial antibodies (AMA) in primary biliary cirrhosis (PBC). METHODS:Sera from 95 p...AIM:To search for further immunodominant peptides of the pyruvate dehydrogenase complex E2-component (PDC-E2) recognized by antimitochondrial antibodies (AMA) in primary biliary cirrhosis (PBC). METHODS:Sera from 95 patients with PBC were tested by enzyme-linked immunosorbent assay against 33 synthetic overlapping peptides (25 amino acids; aa) covering the entire length of the E2-subunit of PDC-E2. Furthermore,the inner lipoyl peptide 167-184 was used in an unlip oylated and a lipoylated form as well as coupled to ovalbumin. Sera from 11 AMA negative/ANA posit ive PBC patients,63 patients with other liver disorders and 22 healthy blood donors served as controls.RESULTS:Of the 95 PBC-sera,74% reacted with the peptide 475-499 and 58% with the pept ide 407-431 located within the catalytic domain of PDC-E2. Patients with other disorders or healthy controls were positive in only up to 18%. Antibodies to the unlipoylatedand lip oylated pept ide 167-184 within the inner lipoyl domain were found in only 5% and 11% of the PBC sera,respectively; using ovalbumin-coupled peptides,the incidence increased up to 57% (unlipoylated form). CONCLUSION:Peptides within the catalytic site of PDC-E2 rather than the previously reported lipoyl binding peptide 167-184 may represent major immunodomin ant epitopes recognized by AMA in PBC.展开更多
Objective:To analyze the structure of aquaporins-3(AQP-3) from Schistosoma japonicum(SJAQP-3) using bioinformalical methods,and to provid of references for vaccine targets research.Methods:Protparam,BepiPred,TMHMM Ser...Objective:To analyze the structure of aquaporins-3(AQP-3) from Schistosoma japonicum(SJAQP-3) using bioinformalical methods,and to provid of references for vaccine targets research.Methods:Protparam,BepiPred,TMHMM Server,MLRC,Geno3d,DNA star software packages were used to predict the physical and chemical properties,hydrophilicity plot, flexibility regions,antigenic index,surface probability plot,secondary structure,and tertiary structure of amino acid sequence of SJAQP-3.Results:SJAQP-3 had six transmembrane regions and two half-spanning helices that form a central channel.The half-spanning helices fold into the centre of the channel.Either of the half-spanning helix had a conserved motif of NPA common to all aquaporins.Predicted linear B-Cell epitopes were most likely at the N-terminal amino acid residues of Saa-7aa,59aa- 62aa,225aa-230aa,282aa -288aa,294aa -29Saa and 305aa -307aa area.59aa- 62aa,22Saa-230aa located outside the membrane,the others located inside the cell.Conclusions:SJAQP-3 is a integral membrane protein in Schistosoma japonicum tegument.There are six potential epitopes in SJ AQP-3.It might be a potential molecular target for the development of vaccines.展开更多
AIM: To identify hepatitis C virus(HCV) core protein epitopes recognized by HLA-A2 restricted cytotoxic T lymphocyte (CTL). METHODS: Utilizing the method of computer prediction followed by a 4h(51)Cr release assay con...AIM: To identify hepatitis C virus(HCV) core protein epitopes recognized by HLA-A2 restricted cytotoxic T lymphocyte (CTL). METHODS: Utilizing the method of computer prediction followed by a 4h(51)Cr release assay confirmation. RESULTS: The results showed that peripheral blood mononuclear cells (PBMC) obtained from two HLA-A2 positive donors who were infected with HCV could lyse autologous target cells labeled with peptide "ALAHGVRAL (core 150-158)". The rates of specific lysis of the cells from the two donors were 37.5% and 15.8%, respectively. Blocking of the CTL response with anti-CD4 mAb caused no significant decrease of the specific lysis. But blocking of CTL response with anti-CD8 mAb could abolish the lysis. CONCLUSION: The peptide (core 150-158) is the candidate epitope recognized by HLAA2 restricted CTL.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(Q23C180006)the Zhejiang A&F University Talent Initiative Project(118-203402005901).
文摘Coronaviruses are widespread in nature and can infect mammals and poultry,making them a public health concern.Globally,prevention and control of emerging and re-emerging animal coronaviruses is a great challenge.The mecha-nisms of virus-mediated immune responses have important implications for research on virus prevention and control.The antigenic epitope is a chemical group capable of stimulating the production of antibodies or sensitized lympho-cytes,playing an important role in antiviral immune responses.Thus,it can shed light on the development of diagnos-tic methods and novel vaccines.Here,we have reviewed advances in animal coronavirus antigenic epitope research,aiming to provide a reference for the prevention and control of animal and human coronaviruses.
基金supported by National Science and Technology Major Project of China (2019YFC1605002)National Natural Science Foundation of China (31872886)。
文摘Mango(Mangifera indica L.)is a tropical fruit that is widely consumed as both fresh fruits and processed products around the world.The high incidence of mango allergy,on the other hand,has sparked widespread concern.Therefore,a summary and analysis of the current status and issues in mango allergen research can guide in-depth study on the mechanism of mango allergy and reveal effective desensitization methods.We described the incidence of fruit allergy,as well as the mechanism and clinical symptoms of mango allergy,in this review.We also looked into the structural properties of mango allergens,the effect of processing methods on mango allergens,prediction methods for mango allergen epitopes,and the current state of research on mango cross-reactive allergens and preventive measures.Finally,the research directions and ideas for the future are proposed and discussed.
基金supported by the National Natural Science Foundation of China(31941001 and 32002292)the Major Science and Technology Project of Henan Province,China(221100110600)the Natural Science Foundation of Henan Province(202300410199).
文摘African swine fever virus(ASFV)is a lethal pathogen that causes severe threats to the global swine industry and it has already had catastrophic socio-economic effects.To date,no licensed prophylactic vaccine exists.Limited knowledge exists about the major immunogens of ASFV and the epitope mapping of the key antigens.As such,there is a considerable requirement to understand the functional monoclonal antibodies(mAbs)and the epitope mapping may be of utmost importance in our understanding of immune responses and designing improved vaccines,therapeutics,and diagnostics.In this study,we generated an ASFV antibody phage-display library from ASFV convalescent swine PBMCs,further screened a specific ASFV major capsid protein(p72)single-chain antibody and fused with an IgG Fc fragment(scFv-83-Fc),which is a specific recognition antibody against ASFV Pig/HLJ/2018 strain.Using the scFv-83-Fc mAb,we selected a conserved epitope peptide(221MTGYKH226)of p72 retrieved from a phage-displayed random peptide library.Moreover,flow cytometry and cell uptake experiments demonstrated that the epitope peptide can significantly promote BMDCs maturation in vitro and could be effectively uptaken by DCs,which indicated its potential application in vaccine and diagnostic reagent development.Overall,this study provided a valuable platform for identifying targets for ASFV vaccine development,as well as to facilitate the optimization design of subunit vaccine and diagnostic reagents.
基金supported by the Beijing Municipal Natural Science Foundation of China(7202100)。
文摘Quail egg ovomucoid can inhibit activation of basophils and eosinophils,while hen egg ovomucoid has been shown to be a major allergen,named Gal d 1.At present,the differences in structure and function between two ovomucoid are unclear.We found the homology of ovomucoid in quail eggs and hen eggs reached77%.Compared with hen egg ovomucoid,the distribution of secondary structure was different in AA52-53,AA57-58,AA66-68,AA71-72,AA131-133,AA139-140,AA157-159 and AA184-185.Among 9 epitopes of egg ovomucoid,there were different amino acids from quail egg ovomucoid in 8 epitopes.Recombination quail egg ovomucoid had trypsin inhibition activity and quail egg ovomucoid didn't specifically bind to serum of eggs allergic patients.Quail egg ovomucoid can significantly inhibit RBL-2 H3 cells degranulation and protect cells morphology to a certain extent,indicating quail egg ovomucoid can inhibit cells activation and have potential anti-allergic effects,which is related to trypsin inhibitory activity.The difference in sensitization compare to hen egg ovomucoid may be due to amino acids differences affecting protein structure by changing antigenic epitopes.
文摘Here,a new integrated machine learning and Chou’s pseudo amino acid composition method has been proposed for in silico epitope mapping of severe acute respiratorysyndrome-like coronavirus antigens.For this,a training dataset including 266 linear B-cell epitopes,1,267 T-cell epitopes and 1,280 non-epitopes were prepared.The epitope sequences were then converted to numerical vectors using Chou’s pseudo amino acid composition method.The vectors were then introduced to the support vector machine,random forest,artificial neural network,and K-nearest neighbor algorithms for the classification process.The algorithm with the highest performance was selected for the epitope mapping procedure.Based on the obtained results,the random forest algorithm was the most accurate classifier with an accuracy of 0.934 followed by K-nearest neighbor,artificial neural network,and support vector machine respectively.Furthermore,the efficacies of predicted epitopes by the trained random forest algorithm were assessed through their antigenicity potential as well as affinity to human B cell receptor and MHC-I/II alleles using the VaxiJen score and molecular docking,respectively.It was also clear that the predicted epitopes especially the B-cell epitopes had high antigenicity potentials and good affinities to the protein targets.According to the results,the suggested method can be considered for developing specific epitope predictor software as well as an accelerator pipeline for designing serotype independent vaccine against the virus.
文摘[ Objective] The aim was to predict the secondary structure and B cell epitope of growth hormone (GH) protein from Acipenser sinensis. [Method] With the amino acid sequence of GH protein from A. sinensis as the base, the secondary structure of GH protein from A. sinensis was predicted by the method of Gamier-Robson, Chou-Fasman and Karpius-Schulz, and its cell epitope was predicted by the method of Kyte- Doolittle, Emini and Jameson-Wolf. [Result] The sections of 18 -23, 55 -55, 67 -73, 83 -86,112 -114,151 -157 and 209 -211 in the N terminal of GH protein molecule had softer structure and these sections could sway or fold to produce more complex tertiary structure. The sections of 19 -23, 51 -71,84 -95, 128 -139, 164 -176 and 189 -195 in the N terminal of GH protein could be the epitope of B cell and there were flexible regions in these sections or near these sections of GH protein molecule. So the dominant regions could be in these sections or near these sections. [ Conclusion] The research provided the basis for the preparation of monoctonal antibody of GH protein from A. sinensis and provided the reference for the discussion for the molecular regulation mechanism of A. sinensis.
文摘[Objective] The B cell epitopes for VP73 protein of African swine fever virus was predicted. [ Method] Based on the analysis of the amino acid sequence and the flexible regions of VP73 protein, the B cell epitopes for VP73 protein of African swine fever virus were predicted by method of Kyte-Doolittie, Emini and Jameson-Wolf. [Result] The B cell epitopes were located at or adjacent to the N-terminal No. 11 - 18,26 -48,73 -82,136 - 150,159 - 174,181 - 189,191 - 210,247 - 276,279 - 295,313 - 323 and 382 - 392. [Conclusion] The multi-parameters analytic method was adopted to predict the B cell epitopes for VP73 protein of African swine fever virus, which laid solid foundation for further characterizing the protein of VP73 and researching epitope vaccine.
文摘[Objective] The research aimed to predict the B cell epitope of DMRT protein in Oreochromis niloticus. [Method] The secondary structure of amino acid sequence of DMRT protein was revealed by Garnier-Robson, Chou-Fasman and Karplus-Schulz methods. The hydrophilicity plot, surface probability and antigenic index were obtained by Kyte-Doolittle, Emini and Jameson-Wolf methods, respectively. Based on the above results, the B cell epitopes for DMRT were predicted. [Result] Both the prediction results from Garnier-Robson, Chou-Fasman methods indicated that the α-helix centers of DMRT protein in O. niloticus were in the N terminal No. 31-56, 68-75, 110-116, 209-211 and 239-243; the β-sheet centers of DMRT protein in O. niloticus were in the N terminal No. 95-99, 177-183, 225-234 and 251-254. With the assistant of Kyte-Doolittle, Emini and Jameson-Wolf methods, the B cell epitopes for DMRT were located in or nearby the N terminal No. 13-16, 35-38, 47-54,84-93, 101-109, 127-156, 166-177 and 198-201. [Conclusion] These results are helpful for preparing the antibody of DMRT protein and revealing the sex determination mechanism of O. niloticus.
文摘[Objective] This study aimed to predict the structural characteristics of Bt Cry2Ab protein in transgenic crops with bioinformatic analysis to provide the theoretical clues for design of antibody Cry2Ab. [Method] The amino acid sequence of Cry2Ab protein was searched from NCBI database. The B cell epitopes were predicted with DNAStar. The binding affinity between Cry2Ab protein and MHC-II molecules was analyzed with NetMHCII 2.2 Server to predict the T cell epitopes. [Result] Prediction result suggested the potential B cell epitope of Cry2Ab locating in the region of 208-215. Analysis of the binding affinity between Cry2Ab and MHC-II molecules suggested the regions of 177-185, 299-307 and 255-263 were the potential T cell epitopes. Human with HLA-DRB10101 alleles and HLA-DRB10701 alleles were more sensitive to Cry2Ab protein. [Conclusion] This study facilitates to understand the structural characteristics of Cry2Ab protein and provides a new clue to improve the assessment method for potential allergenicity of genetically modified food.
基金The National Natural Science Foundations of China (30870131)the National Key Projects in the Infectious Fields (2008ZX10002-011, 2008ZX10004-004)
文摘In recent years,the in silico epitopes prediction tools have facilitated the progress of vaccines development significantly and many have been applied to predict epitopes in viruses successfully. Herein,a general overview of different tools currently available,including T cell and B cell epitopes prediction tools,is presented. And the principles of different prediction algorithms are reviewed briefly. Finally,several examples are present to illustrate the application of the prediction tools.
基金Supported by the Natural Science Fund of Yunnan Province, No. 2003C0076M
文摘AIM: To construct and highly express an epitope of hepatitis C virus (HCV) in a foreign epitope presenting vector based on an insect virus, and to study the antigenicity of the epitope. METHODS: The HCV epitope sequence (amino acid residues 315 to 328: EGHRMAWDMMMNWS) of the El region was constructed at different positions of a foreign epitope presenting vector based on an insect virus, flock house virus (FHV) capsid protein encoding gene as a vector, and expressed in E. coli cells. Western blotting and ELISA were used to detect the immunoreactivity of these recombinant proteins. RESULTS: The gene encoding of the concerned B-cell epitope of HCV El envelope protein was expressed on FHV capsid carrier protein at positions I1 (aa 106), 12 (aa 153) and 13 (aa 305), respectively, on the surface of FHV capsid protein. The recombinant proteins in this system could be highly expressed in more than 40% of total cell protein of E. coli BL21. All the expressed recombinant proteins were in inclusion body form, and showed obvious immunoreactivity by Western blotting. Further purified recombinant proteins were detected by indirect ELISA as coating antigen respectively. All recombinant proteins could still show immunoreactivity. CONCLUSION: The epitope of HCV El envelope protein can be highly expressed in FHV carrier system as a chimeric protein with high immunoreactivity. This system has multiple entry sites conferring many possible conformations closer to the native one for a given sequence.
文摘Objective To identify epitope relating to BAC 5 mcAb, a kind of monoclonal antibody (mcAb) located on the surface of nasopharyngeal carcinoma (NPC) cells. Methods Using BAC 5 mcAb as a selected target, the 3 rounds of biopanning to a 12 mer random peptide library (RPL) presented by M13 phages were carried out. The positive M13 phage clones were chosen and confirmed with sandwich ELISA for antibody capture and competitive assay. The exogenous DNA fragments in the positive/negative M13 phages were sequenced to deduce and compare the order of the amino acids of exogenous peptides among the phage clones. Results 77% (35/45) of the phages eluted from the 3rd round of biopnning could be captured by BAC 5 mcAb. The 3 kinds of the peptides were displayed by M13 phages from the 8 positive clones identified with competitive assay. The same character of '-P-V-'structure existed near N-terminus of the 3 different peptides, i.e. -H-Q-S-H-Y-P-Y-P-V-V-S-L- (4/8) -Q-N-Q-A-W-F-S-Q-P-V-R-M- (3/8) and T-Q-A-Y-K-G-F-P-V-L-P-S- (1/8) in comparison with the peptide ' -N-H-Q-S-T-F-W-Q-K-W-T-A-' displayed by M13 phages from the negative clones (6/6). Conclusion BAC 5 mcAb can recognize the 3 kinds of the peptides with-P-V-structure near N-terminus. These peptides mimic the structure of the epitope on the surface of NPC cells recognized by BAC 5 mcAb.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303034-8)~~
文摘[Objective] This study aimed to develop an indirect ELISA to detect the antibodies against Actinobacil us pleuropneumoniae (APP) using the recombinant ApxⅡA1 protein expressed in prokaryotic cells as the antigen. [Method] The major epi-tope domain of ApxⅡ was cloned into the prokaryotic expression vector pET-28a (+) to obtain the recombinant plasmid pET-ApxⅡA1, which was then transformed into E. coli BL21 (DE3) for expression. The immunogenicity of the recombinant pro-tein was analyzed by western-blotting. After that, the purified recombinant protein was used as the coating antigen in the indirect ELISA for detecting the antibodies against APP. Final y, the concentration of coated antigen and the dilution of serum were optimized. [Result] Proved by enzyme digestion and sequencing, the recombi-nant plasmid pET-ApxⅡA1 was constructed successful y. The recombinant protein was highly expressed in prokaryotic cells, and Western-blotting analysis showed that it was recognized specifical y by positive serum of APP. The indirect ELISA could detect the antibody against APP with the purified recombinant protein as the coating antigen. The optimal concentration of coated antigen was 1.23 μg/ml and the opti-mal dilution of serum was 1:100. Compared with a commercial ELISA kit detecting antibody against ApxⅣ, the coincidence rate of the indirect ELISA was 90.4%. [Conclusion] Our results indicated that the indirect ELISA is sensitive and specific, and suitable for evaluating the effect of APP vaccine and epidemiological surveys.
文摘Objective: To explore RNA dependent RNA polymerase of Chikungunya virus(CHIKV) and develop T cell based epitopes with high antigenicity and good binding affinity for the human leukocyte antigen(HLA) classes as targets for epitopes based CHIKV vaccine. Methods: In this study we downloaded 371 non-structural protein 4 protein sequences of CHIKV belonging to different regions of the world from the US National Institute of Allergy and Infectious Diseases(NIAID) virus pathogen resource database. All the sequences were aligned by using CLUSTALW software and a consensus sequence was developed by using Uni Pro U Gene Software version 1.2.1. PropredⅠand Propred software were used to predict HLAⅠ and HLAⅡ binding promiscuous epitopes from the consensus sequence of non-structural protein 4 protein. The predicted epitopes were analyzed to determine their antigenicity through Vaxijen server version 2.0. All the HLAⅠ binding epitopes were scanned to determine their immunogenic potential through the Immune Epitope Database(IEDB). All the predicted epitopes of our study were fed to IEDB database to determine whether they had been tested earlier. Results: Twenty two HLA class Ⅱ epitopes and eight HLA classⅠepitopes were predicted. The promiscuous epitopes WMNMEVKII at position 486–494 and VRRLNAVLL at 331–339 were found to bind with 37 and 36 of the 51 HLA class Ⅱ alleles respectively. Epitope MANRSRYQS at position 58–66 and epitopes YQSRKVENM at positions 64–72 were predicted to bind with 12 and 9 HLAⅠI alleles with antigenicity scores of 0.754 9 and 1.013 0 respectively. Epitope YSPPINVRL was predicted to bind 18 HLAⅠ alleles and its antigenicity score was 1.425 9 and immunogenicity score was 0.173 83. This epitope is very useful in the preparation of a universal vaccine against CHIKV infection. Conclusions: Epitopes reported in this study showed promiscuity, antigenicity as well as good binding affinity for the HLA classes. These epitopes will provide the baseline for development of efficacious vaccine for CHIKV.
基金Supported by the National Natural Science Foundation of China(30771240)the Academic Team for Scientific Research Innovation of Guangzhou Education System(B94118)~~
文摘[Objective] To predict the secondary structure and B cell epitopes of the rice major allergen RAG1. [Method] The amino acid sequence of rice allergen RAG1 was acquired from Expasy protein database. The secondary structure of RAG1 was predicted by DNAStar Protean software with Gamier-Robson program, Chou-Fasman program and Karplus-Schulz program; the B cell epitopes of RAG1 was predicted with the Kyte Doolittle hydrophilic program, Emini surface accessibility program and Jameson-Wolf antigenic index program. [Result] The predictions on secondary structure and B cell epitopes showed that the regions of 33-44, 119-129, 155-163 were the dominant B cell epitopes. [Conclusion] This study predicted the potential dominant B cell epitopes in rice allergen RAG1 by comprehensive use of multi-methods and multi-parameters, and provided a theoretical basis for further researches on identification, antigen modification and epitope vaccine design of RAG1 B cell epitopes.
文摘A novel coronavirus, severe acute respiratory syndrome (SA RS)-associated coronavirus (SARS-CoV), has been identified as the causal agent of SARS. Spike (S) protein is a major structural glycoprotein of the SARS virus and a potential target for SARS-specific cell-mediated immune responses. A pa nel of S protein-derived peptides was tested for their binding affinity to HLA -A *0201 molecules. Peptides with high affinity for HLA-A *0201 were then as se ssed for their capacity to elicit specific immune responses mediated by cytotoxi c T lymphocytes (CTLs) both in vivo, in HLA-A2.1/K b transgenic mice, a nd in vitro, from peripheral blood lymphocytes (PBLs) harvested from healthy HLA-A 2.1 + donors. SARS-CoV protein-derived peptide-1 (SSp-1 RLNEVAKNL), induced pepti de-specific CTLs both in vivo (transgenic mice) and in vitro (human PBL s), which specifically released interferon-gamma (IFN-gamma) upon stimulation with SSp-1-pulsed autologous dendritic cells (DCs) or T2 cells. SSp-1-specif ic CTLs also lysed major histocompatibility complex (MHC)-matched tumor cell lines engineered to express S proteins. HLA-A *0201-SSp-1 tetramer staining re vealed the presence of significant populations of SSp-1-specific CTLs in SSp- 1-induced CD8 + T cells. We propose that the newly identified epitope SSp-1 w ill help in the characterization of virus control mechanisms and immunopathology in SARS-CoV infection, and may be relevant to the development of immunotherape utic approaches for SARS.
基金supported by the grant of Shanghai Science and Technology Committee(No.03DZ19113)National Key Basic Research Program of China(No.2001CB510006)+1 种基金863 project(No.2001AA231011)a specific project against SARS from Chinese Academy of Sciences.
文摘The nueleocapsid (N) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) is a major virion structural protein. In this study, two epitopes (Nl and N2) of the N protein of SARS-CoV were predicted by bioinformatics analysis. After immunization with two peptides, the peptides-specific antibodies were isolated from the immunized rabbits. The further experiments demonstrated that N1 peptide-induced polyclonal antibodies had a high affinity to bind to E. coli expressed N protein of SAR,S-CoV. Furthermore, it was confirmed that Nl peptide-specific IgG antibodies were detectable in the sera of severe acute respiratory syndrome (SARS) patients. The results indicated that an epitope of the N protein has been identified and N protein specific Abs were produced by peptide immunization, which will be useful for the study of SARS-CoV.
文摘AIM:To search for further immunodominant peptides of the pyruvate dehydrogenase complex E2-component (PDC-E2) recognized by antimitochondrial antibodies (AMA) in primary biliary cirrhosis (PBC). METHODS:Sera from 95 patients with PBC were tested by enzyme-linked immunosorbent assay against 33 synthetic overlapping peptides (25 amino acids; aa) covering the entire length of the E2-subunit of PDC-E2. Furthermore,the inner lipoyl peptide 167-184 was used in an unlip oylated and a lipoylated form as well as coupled to ovalbumin. Sera from 11 AMA negative/ANA posit ive PBC patients,63 patients with other liver disorders and 22 healthy blood donors served as controls.RESULTS:Of the 95 PBC-sera,74% reacted with the peptide 475-499 and 58% with the pept ide 407-431 located within the catalytic domain of PDC-E2. Patients with other disorders or healthy controls were positive in only up to 18%. Antibodies to the unlipoylatedand lip oylated pept ide 167-184 within the inner lipoyl domain were found in only 5% and 11% of the PBC sera,respectively; using ovalbumin-coupled peptides,the incidence increased up to 57% (unlipoylated form). CONCLUSION:Peptides within the catalytic site of PDC-E2 rather than the previously reported lipoyl binding peptide 167-184 may represent major immunodomin ant epitopes recognized by AMA in PBC.
文摘Objective:To analyze the structure of aquaporins-3(AQP-3) from Schistosoma japonicum(SJAQP-3) using bioinformalical methods,and to provid of references for vaccine targets research.Methods:Protparam,BepiPred,TMHMM Server,MLRC,Geno3d,DNA star software packages were used to predict the physical and chemical properties,hydrophilicity plot, flexibility regions,antigenic index,surface probability plot,secondary structure,and tertiary structure of amino acid sequence of SJAQP-3.Results:SJAQP-3 had six transmembrane regions and two half-spanning helices that form a central channel.The half-spanning helices fold into the centre of the channel.Either of the half-spanning helix had a conserved motif of NPA common to all aquaporins.Predicted linear B-Cell epitopes were most likely at the N-terminal amino acid residues of Saa-7aa,59aa- 62aa,225aa-230aa,282aa -288aa,294aa -29Saa and 305aa -307aa area.59aa- 62aa,22Saa-230aa located outside the membrane,the others located inside the cell.Conclusions:SJAQP-3 is a integral membrane protein in Schistosoma japonicum tegument.There are six potential epitopes in SJ AQP-3.It might be a potential molecular target for the development of vaccines.
基金the National Nature Science Foundation of China,No.39800121
文摘AIM: To identify hepatitis C virus(HCV) core protein epitopes recognized by HLA-A2 restricted cytotoxic T lymphocyte (CTL). METHODS: Utilizing the method of computer prediction followed by a 4h(51)Cr release assay confirmation. RESULTS: The results showed that peripheral blood mononuclear cells (PBMC) obtained from two HLA-A2 positive donors who were infected with HCV could lyse autologous target cells labeled with peptide "ALAHGVRAL (core 150-158)". The rates of specific lysis of the cells from the two donors were 37.5% and 15.8%, respectively. Blocking of the CTL response with anti-CD4 mAb caused no significant decrease of the specific lysis. But blocking of CTL response with anti-CD8 mAb could abolish the lysis. CONCLUSION: The peptide (core 150-158) is the candidate epitope recognized by HLAA2 restricted CTL.