The overall survival of patients with cervical cancer has improved due to detection at an early stage and availability of comprehensive treatments in China. As patients' lives prolonged, it is important to underst...The overall survival of patients with cervical cancer has improved due to detection at an early stage and availability of comprehensive treatments in China. As patients' lives prolonged, it is important to understand their health-related quality of life(QoL) during and after treatment. We used the EQ-5D questionnaire to assess QoL of 194 patients with cervical lesions at Sichuan University West China Second Hospital between May 2010 and January 2011. Patients were surveyed before primary treatment and at 1, 3, and 6 months after primary treatment. Results showed a consistent decline in EQ-5D scores in the spectrum of cervical lesions at each time point after treatment(all P < 0.05). For patients with precursor lesions, there was an increasing trend along the timeline of treatment(P < 0.01). For patients with early-stage cervical cancer, EQ-5D scores declined in the first month(P = 0.01) and gradually increased to higher levels at 6 months post-treatment than those before treatment(P < 0.01). EQ-5D scores followed a similar trend in patients with advanced cervical cancer(P = 0.04), though they did not statistically rebound after 6 months(0.84 ± 0.19 vs. 0.86 ± 0.11, P = 0.62). Regarding advanced cervical cancer, EQ-5D scores for women above 40 years of age appeared to recover more rapidly and reached higher levels than those for women below 40 years(P = 0.03). Caution and extra care are recommended in the early period of cervical cancer treatment given the slight deterioration in the QoL, and in particular, for younger cervical cancer patients. Our study implies that health care providers may need to improve the health-related QoL of cervical cancer patients.展开更多
The ultra-low frequency (ULF) magnetic field data at a station very close to the 2008 Sichuan earthquake (EQ) (on 12 May, 2008;M = 8.0) are extensively studied on the basis of combined statistical and natural time ana...The ultra-low frequency (ULF) magnetic field data at a station very close to the 2008 Sichuan earthquake (EQ) (on 12 May, 2008;M = 8.0) are extensively studied on the basis of combined statistical and natural time analyses. Two effects in ULF are treated: one is the well-known ULF radiation from the lithosphere, and the other is the non-conventional depression of ULF horizontal magnetic field. The simple statistical analysis has yielded: 1) no clear evidence of the presence of precursory ULF radiation, and 2) a significant effect of depression of ULF horizontal field a few days before the EQ (as a signature of ionospheric perturbations). The recently introduced natural time analysis has also been performed in order to study the critical features of the lithosphere and essentially new information has been brought about. The parameter “polarization”, as the ratio of vertical to horizontal components, showed critical features in the time period of 17 - 27 April, about one month to two weeks before the EQ as a signature of lithospheric radiation. Then, the natural time analysis has reconfirmed the presence of ionospheric perturbations a few days before the EQ, together with an additional time window found on 19 - 23 April, about one month before the EQ, exhibiting critical features in the ULF depression.展开更多
Induction vectors have been extensively calculated using data from 19 Japanese observatories for a dozen years preceding the huge 2011 Tohoku earthquake (EQ). At 6 observatories anomalous variations of induction vecto...Induction vectors have been extensively calculated using data from 19 Japanese observatories for a dozen years preceding the huge 2011 Tohoku earthquake (EQ). At 6 observatories anomalous variations of induction vectors were separated in the years of 2008-2010 that can be identified as middle-term precursors. These observatories are located not at the shortest distance from the EQ epicenter, that is in agreement with the widely known phenomenon of spatial selectivity of EQ precursors. The analysis of horizontal tensors reveals a conductivity anomaly under the central part of the Boso peninsula (at 30 km from Tokyo) with a WNW-ESE strike coinciding both with the Sagami trough strike and the strike of well conducting 3 km thick sediments. A joint analysis of geoelectric and tectonic data leads to a preliminary conclusion that the Boso conductivity anomaly connects two large scale conductors: Pacific sea water and a deep magma reservoir beneath a volcanic belt. Between two so different conductors an unstable transition zone can be expected which should be sensitive to changes of stress. Applying our original processing including two steps analysis and elimination of annual and monthly periods, a short-term two-month-long precursor of bay-like form was successfully separated at the observatory of Kanozan, KNZ (over the Boso anomaly) despite its strong noise. All the results were obtained with advanced multi-windows multi-rr (remote reference) robust programs with a coherency control. Dependence of the results of induction vector calculation on geomagnetic activity was carefully studied, and this dependence is relatively strong when the magnetotelluric field and noise have approximately the same magnitude. But even in this case we could identify the precursor field.展开更多
This work is an attempt to critically analyze the existing theoretical models of the impact of earthquake preparation processes on the state of the earth’s atmosphere and ionosphere in the zone of growing seismic act...This work is an attempt to critically analyze the existing theoretical models of the impact of earthquake preparation processes on the state of the earth’s atmosphere and ionosphere in the zone of growing seismic activity, as well as the mechanisms of formation and transfer of disturbances in various media over the earthquake center. The determining factor (criterion) of the analysis is the degree of compliance of the simulation results with experimental data obtained at various phases of earthquake development by direct and remote diagnostic methods using ground and aerospace technologies. The key role is played by the model’s compliance with the results of measuring electric fields and currents in the near-ground atmosphere and ionosphere, small-scale ionospheric inhomogeneities and correlated field-aligned currents and electromagnetic ULF/ELF emissions. A full-fledged model should also explain the origin of such seismic related phenomena as the generation in the troposphere and over-horizon propagation of pulsed VHF radiation, thermal effects and associated IR emissions as well as the modification of plasma distribution in the D, E and F layers of the ionosphere. The use of this criterion in the analysis allowed us to identify a theoretical model that most fully describes the totality of the above-mentioned experimental data within a single physical mechanism. This is an electrodynamic model based on the perturbation of the conductivity current in the global atmosphere—ionosphere electric circuit due to the injection of charged aerosols into the atmosphere during the preparation and development of an earthquake. The present paper describes this model and the formation mechanisms of related phenomena in the atmosphere and ionosphere, which can be considered as short-term precursors to earthquakes.展开更多
基金sponsored by a grant from the China Ministry of Health Special Funds for Public Sector Research (No. 2009020027)
文摘The overall survival of patients with cervical cancer has improved due to detection at an early stage and availability of comprehensive treatments in China. As patients' lives prolonged, it is important to understand their health-related quality of life(QoL) during and after treatment. We used the EQ-5D questionnaire to assess QoL of 194 patients with cervical lesions at Sichuan University West China Second Hospital between May 2010 and January 2011. Patients were surveyed before primary treatment and at 1, 3, and 6 months after primary treatment. Results showed a consistent decline in EQ-5D scores in the spectrum of cervical lesions at each time point after treatment(all P < 0.05). For patients with precursor lesions, there was an increasing trend along the timeline of treatment(P < 0.01). For patients with early-stage cervical cancer, EQ-5D scores declined in the first month(P = 0.01) and gradually increased to higher levels at 6 months post-treatment than those before treatment(P < 0.01). EQ-5D scores followed a similar trend in patients with advanced cervical cancer(P = 0.04), though they did not statistically rebound after 6 months(0.84 ± 0.19 vs. 0.86 ± 0.11, P = 0.62). Regarding advanced cervical cancer, EQ-5D scores for women above 40 years of age appeared to recover more rapidly and reached higher levels than those for women below 40 years(P = 0.03). Caution and extra care are recommended in the early period of cervical cancer treatment given the slight deterioration in the QoL, and in particular, for younger cervical cancer patients. Our study implies that health care providers may need to improve the health-related QoL of cervical cancer patients.
文摘The ultra-low frequency (ULF) magnetic field data at a station very close to the 2008 Sichuan earthquake (EQ) (on 12 May, 2008;M = 8.0) are extensively studied on the basis of combined statistical and natural time analyses. Two effects in ULF are treated: one is the well-known ULF radiation from the lithosphere, and the other is the non-conventional depression of ULF horizontal magnetic field. The simple statistical analysis has yielded: 1) no clear evidence of the presence of precursory ULF radiation, and 2) a significant effect of depression of ULF horizontal field a few days before the EQ (as a signature of ionospheric perturbations). The recently introduced natural time analysis has also been performed in order to study the critical features of the lithosphere and essentially new information has been brought about. The parameter “polarization”, as the ratio of vertical to horizontal components, showed critical features in the time period of 17 - 27 April, about one month to two weeks before the EQ as a signature of lithospheric radiation. Then, the natural time analysis has reconfirmed the presence of ionospheric perturbations a few days before the EQ, together with an additional time window found on 19 - 23 April, about one month before the EQ, exhibiting critical features in the ULF depression.
文摘Induction vectors have been extensively calculated using data from 19 Japanese observatories for a dozen years preceding the huge 2011 Tohoku earthquake (EQ). At 6 observatories anomalous variations of induction vectors were separated in the years of 2008-2010 that can be identified as middle-term precursors. These observatories are located not at the shortest distance from the EQ epicenter, that is in agreement with the widely known phenomenon of spatial selectivity of EQ precursors. The analysis of horizontal tensors reveals a conductivity anomaly under the central part of the Boso peninsula (at 30 km from Tokyo) with a WNW-ESE strike coinciding both with the Sagami trough strike and the strike of well conducting 3 km thick sediments. A joint analysis of geoelectric and tectonic data leads to a preliminary conclusion that the Boso conductivity anomaly connects two large scale conductors: Pacific sea water and a deep magma reservoir beneath a volcanic belt. Between two so different conductors an unstable transition zone can be expected which should be sensitive to changes of stress. Applying our original processing including two steps analysis and elimination of annual and monthly periods, a short-term two-month-long precursor of bay-like form was successfully separated at the observatory of Kanozan, KNZ (over the Boso anomaly) despite its strong noise. All the results were obtained with advanced multi-windows multi-rr (remote reference) robust programs with a coherency control. Dependence of the results of induction vector calculation on geomagnetic activity was carefully studied, and this dependence is relatively strong when the magnetotelluric field and noise have approximately the same magnitude. But even in this case we could identify the precursor field.
文摘This work is an attempt to critically analyze the existing theoretical models of the impact of earthquake preparation processes on the state of the earth’s atmosphere and ionosphere in the zone of growing seismic activity, as well as the mechanisms of formation and transfer of disturbances in various media over the earthquake center. The determining factor (criterion) of the analysis is the degree of compliance of the simulation results with experimental data obtained at various phases of earthquake development by direct and remote diagnostic methods using ground and aerospace technologies. The key role is played by the model’s compliance with the results of measuring electric fields and currents in the near-ground atmosphere and ionosphere, small-scale ionospheric inhomogeneities and correlated field-aligned currents and electromagnetic ULF/ELF emissions. A full-fledged model should also explain the origin of such seismic related phenomena as the generation in the troposphere and over-horizon propagation of pulsed VHF radiation, thermal effects and associated IR emissions as well as the modification of plasma distribution in the D, E and F layers of the ionosphere. The use of this criterion in the analysis allowed us to identify a theoretical model that most fully describes the totality of the above-mentioned experimental data within a single physical mechanism. This is an electrodynamic model based on the perturbation of the conductivity current in the global atmosphere—ionosphere electric circuit due to the injection of charged aerosols into the atmosphere during the preparation and development of an earthquake. The present paper describes this model and the formation mechanisms of related phenomena in the atmosphere and ionosphere, which can be considered as short-term precursors to earthquakes.