期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Decadal trends in precipitable water vapor over the Indus River Basin using ERA5 reanalysis data 被引量:1
1
作者 Seema RANI Jyotsna SINGH +2 位作者 Subhash SINGH Purushottam TIWARI Suraj MAL 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2928-2945,共18页
Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a sig... Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a significant impact on atmospheric stability absorption and emission of radiation,thus engendering alterations in the Earth’s radiative equilibrium.As such,precise quantification of PWV holds the potential to enhance weather prognostication and fortify preparedness against severe meteorological phenomena.This study aimed to elucidate the spatial and temporal changes in seasonal and annual PWV across the Indus River Basin and its sub-basins using ERA5 reanalysis datasets.The present study used ERA5 PWV(entire atmospheric column),air temperature at 2 m(t2m)and 500 hPa(T_500hPa),evapotranspiration,and total cloud cover data from 1960 to 2021.Theil Sen slope estimator and Mann-Kendall test were used for trend analysis.Correlation and multiple regression methods were used to understand the association of PWV with other factors.The findings have unveiled the highest increase in mean PWV during the monsoon(0.40 mm/decade),followed by premonsoon(0.37 mm/decade),post-monsoon(0.27 mm/decade),and winter(0.19 mm/decade)throughout the study period.Additionally,the mean PWV exhibited the most pronounced positive trend in the sub-basin Lower Indus(LI),followed by Panjnad(P),Kabul(K),and Upper Indus(UI)across all seasons,except winter.Annual PWV has also risen in the Indus basin and its sub-basins over the last six decades.PWV exhibits a consistent upward trend up to an elevation of 3500 m within the basin which is most pronounced during the monsoon season,followed by the pre-monsoon.The escalating PWV within the basin is reasonably ascribed to increasing air temperatures,augmented evapotranspiration,and heightened cloud cover.These findings hold potential utility for pertinent authorities engaged in water resource management and planning. 展开更多
关键词 HIMALAYA precipitable Water Vapor Indus River Basin ATMOSPHERE Climate Change ERA5 reanalysis data
下载PDF
Assessment of ERA5 and ERA-Interim in Reproducing Mean and Extreme Climates over West Africa
2
作者 Imoleayo Ezekiel GBODE Toju Esther BABALOLA +1 位作者 Gulilat Tefera DIRO Joseph Daniel INTSIFUL 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第4期570-586,共17页
In situ data in West Africa are scarce,and reanalysis datasets could be an alternative source to alleviate the problem of data availability.Nevertheless,because of uncertainties in numerical prediction models and assi... In situ data in West Africa are scarce,and reanalysis datasets could be an alternative source to alleviate the problem of data availability.Nevertheless,because of uncertainties in numerical prediction models and assimilation methods,among other things,existing reanalysis datasets can perform with various degrees of quality and accuracy.Therefore,a proper assessment of their shortcomings and strengths should be performed prior to their usage.In this study,we examine the performance of ERA5 and ERA-interim(ERAI)products in representing the mean and extreme climates over West Africa for the period 1981-2018 using observations from CRU and CHIRPS.The major conclusion is that ERA5 showed a considerable decrease in precipitation and temperature biases and an improved representation of inter-annual variability in much of western Africa.Also,the annual cycle is better captured by ERA5 in three of the region’s climatic zones;specifically,precipitation is well-reproduced in the Savannah and Guinea Coast,and temperature in the Sahel.In terms of extremes,the ERA5 performance is superior.Still,both reanalyses underestimate the intensity and frequency of heavy precipitations and overestimate the number of wet days,as the numerical models used in reanalyses tend to produce drizzle more often.While ERA5 performs better than ERAI,both datasets are less successful in capturing the observed long-term trends.Although ERA5 has achieved considerable progress compared to its predecessor,improved datasets with better resolution and accuracy continue to be needed in sectors like agriculture and water resources to enable climate impact assessment. 展开更多
关键词 West Africa ERAI ERA5 reanalysis precipitation temperature EXTREMES
下载PDF
Intercomparison of CRA-Interim Precipitation Products with ERA5 and JRA-55 被引量:3
3
作者 叶梦姝 姚秀萍 +2 位作者 张涛 许小峰 王式功 《Journal of Tropical Meteorology》 SCIE 2021年第2期136-147,共12页
Based on the hourly observational data during 2007-2016 from surface meteorological stations in China,this paper compares the influence of 3-hourly precipitation data,mainly from the Chinese Reanalysis-Interim(CRA-Int... Based on the hourly observational data during 2007-2016 from surface meteorological stations in China,this paper compares the influence of 3-hourly precipitation data,mainly from the Chinese Reanalysis-Interim(CRA-Interim),ECMWF Reanalysis 5(ERA5)and Japanese Reanalysis-55(JRA-55),on the simulation of the spatial and temporal distribution of regional precipitation in China and the bias distribution of the simulation.The results show that:(1)The three sets of reanalysis datasets can all reflect the basic spatial distribution characteristics of annual average precipitation in China.The simulation of topographic forced precipitation in complex terrain by using CRA-interim is more detailed,while CRA-interim has larger negative bias in central and East China,and larger positive bias in southwest China.(2)In terms of seasonal precipitation,the three sets of reanalysis datasets overestimate the precipitation in the heavy rainfall zone in spring and summer,especially in southwest China.According to CRA-interim,location of the rain belt in the First Rainy Season in South China is west by south,and the summer precipitation has positive bias in southwest and South China.(3)All of the reanalysis datasets can basically reflect the distribution difference of inter-annual variation of drought and flood,but overall the CRA-Interim generally shows negative bias,while the ERA5 and JRA-55 exhibit positive bias.(4)For the diurnal variation of precipitation in summer,all the reanalysis datasets perform better in simulating the daytime precipitation than in the night,and the bias of CRA-interim is less in the Southeast and Northeast than elsewhere.(5)The ERA5 generally performs the best on the evaluation of quantitative precipitation forecast,the JRA-55 is the next,followed by the CRA-Interim.The CRA-Interim has higher missing rate and lower threat score for heavy rains;however,at the level of downpour,the CRA-Interim performs slightly better. 展开更多
关键词 reanalysis datasets temporal and spatial distributions of precipitation CRA ERA5 JRA-55
下载PDF
ERA-5降水数据在雨量站稀疏地区的适用性研究--以缅甸密支那流域为例 被引量:2
4
作者 张佳鹏 王加虎 +1 位作者 李丽 陈明霞 《人民长江》 北大核心 2021年第6期36-41,共6页
为探究降水产品在雨量站稀疏地区的适用性,选择位于缅甸的密支那流域作为研究流域,以雨量站数据作为参考数据,评估了ERA-5再分析降水数据的精度;并使用ERA-5数据率定和驱动CREST模型,探究了该数据应用于径流模拟的可行性。结果表明:在... 为探究降水产品在雨量站稀疏地区的适用性,选择位于缅甸的密支那流域作为研究流域,以雨量站数据作为参考数据,评估了ERA-5再分析降水数据的精度;并使用ERA-5数据率定和驱动CREST模型,探究了该数据应用于径流模拟的可行性。结果表明:在整个研究区域内,ERA-5数据和雨量站数据之间的相关程度高,差距较小;而在径流模拟方面,ERA-5数据可以较好地模拟中低水位的日径流过程,对于高水位流量则存在着一定的低估,但不同观测时段的NSCE系数均在0.7以上,总体而言精度仍较高;对于月径流量,该数据在不同观测时段的NSCE系数均大于0.85,相关系数均在0.9以上,能够较好地描述径流的年内变化特征。因此,ERA-5降水数据在一定程度上可以代替雨量站数据作为研究区域的降水数据来源,应用于流域水资源管理、水利工程设计等领域。 展开更多
关键词 再分析降水数据 精度评估 径流模拟 CREST 密支那流域 缺资料地区
下载PDF
Influence of vapor pressure deficit on vegetation growth in China
5
作者 LI Chuanhua ZHANG Liang +3 位作者 WANG Hongjie PENG Lixiao YIN Peng MIAO Peidong 《Journal of Arid Land》 SCIE CSCD 2024年第6期779-797,共19页
Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric ... Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD. 展开更多
关键词 vapor pressure deficit(VPD) near-infrared reflectance of vegetation(NIRv) leaf area index(LAI) gross primary productivity(GPP) Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06) European Centre for Medium-Range Weather Forecasts(ECMWF)reanalysis 5(era-5) climate change
下载PDF
Comprehensive applicability evaluation of four precipitation products at multiple spatiotemporal scales in Northwest China
6
作者 WANG Xiangyu XU Min +3 位作者 KANG Shichang LI Xuemei HAN Haidong LI Xingdong 《Journal of Arid Land》 SCIE 2024年第9期1232-1254,共23页
Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relie... Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future. 展开更多
关键词 precipitation products the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5) Global precipitation Climatology Centre(GPCC) Climatic Research Unit gridded Time Series(CRU TS) Tropical Rainfall Measuring Mission(TRMM) applicability evaluation Northwest China
下载PDF
中国沿海HY-2A校正微波辐射计水汽含量数据精度检验方法
7
作者 范士杰 史航 +1 位作者 孙浩 刘焱雄 《海洋科学进展》 CAS CSCD 北大核心 2022年第3期505-512,共8页
为评价“海洋二号”卫星(HaiYang-2A,HY-2A)校正微波辐射计(Calibration Microwave Radiometer,CMR)近海水汽产品精度,以中国沿海全球导航卫星系统(Global Navigation Satellite System,GNSS)业务观测站数据和欧洲中期天气预报中心(Euro... 为评价“海洋二号”卫星(HaiYang-2A,HY-2A)校正微波辐射计(Calibration Microwave Radiometer,CMR)近海水汽产品精度,以中国沿海全球导航卫星系统(Global Navigation Satellite System,GNSS)业务观测站数据和欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)发布的第五代大气再分析资料(ECMWF Reanalysis 5,ERA5)作为验证数据。首先对选取的GNSS业务观测站数据和CMR水汽含量数据进行时空匹配,两者的观测时间一致、空间范围取为100 km;然后利用精密单点定位方法反演GNSS业务观测站上空的大气可降水量(Precipitable Water Vapor,PWV),同时对1 h分辨率的ERA5再分析资料内插计算,得到CMR水汽数据点处的ERA5 PWV;最后以GNSS PWV和ERA5 PWV为参考,分析2015年CMR水汽产品精度和偏差时空分布。结果表明,CMR水汽含量和GNSS PWV、ERA5 PWV之间的相关系数r均高于0.96,平均均方根误差分别为3.17 mm和1.58 mm,具有较高的精度;CMR水汽含量相对于GNSS PWV和ERA5 PWV的偏差不随季节变化而变化,但CMR水汽含量数据精度随纬度的增加而有所提高。 展开更多
关键词 “海洋二号”卫星(HY-2A) 校正微波辐射计 大气可降水量 中国沿海GNSS业务观测 第五代大气再分析资料(ERA5)
下载PDF
基于BDS精密星历产品的水汽探测性能分析 被引量:8
8
作者 吴旭祥 郭秋英 侯建辉 《全球定位系统》 CSCD 2019年第5期91-99,共9页
研究北斗卫星导航系统(BDS)反演大气可降水量的性能有利于推动BDS在数值天气预报、气象学研究等方面的应用.基于武汉大学发布的BDS最终精密星历产品(WUM)、快速精密星历产品(WHR)和超快速精密星历产品(WHU),利用MGEX站和单基站连续运行... 研究北斗卫星导航系统(BDS)反演大气可降水量的性能有利于推动BDS在数值天气预报、气象学研究等方面的应用.基于武汉大学发布的BDS最终精密星历产品(WUM)、快速精密星历产品(WHR)和超快速精密星历产品(WHU),利用MGEX站和单基站连续运行参考站(CORS)提供的全球卫星导航系统(GNSS)多模观测数据,在验证三种BDS精密星历产品解算对流层天顶延迟的精度达到要求后,将基于三种BDS精密星历产品解算的大气可降水量分别与GPS水汽探测结果、ERA-5再分析资料和探空站数据进行对比,分析基于三种精密星历产品的BDS水汽探测性能.实验结果表明:基于BDS最终精密星历产品的大气水汽探测精度高于快速星历产品和超快速星历产品,三种BDS星历产品反演大气可降水量的相对精度和可靠性与GPS相当,满足中小尺度数值天气预报和气象学研究等要求. 展开更多
关键词 北斗 精密星历 大气可降水量 MGEX era-5再分析资料
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部