目的探索Jurkat T细胞中胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)活性动力学以及基质刚度对ERK活性的影响。方法利用荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术实时观测Jurkat细胞中ER...目的探索Jurkat T细胞中胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)活性动力学以及基质刚度对ERK活性的影响。方法利用荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术实时观测Jurkat细胞中ERK活性的变化,或细胞处于I型胶原基质胶中检测其影响。结果部分Jurkat细胞中存在ERK活性脉冲现象,频率约为3次/h,FRET振幅变化约为20%。在抗体激活T细胞抗原受体(T-cell receptor,TCR)的条件下,ERK脉冲依然存在,频率和振幅无显著变化。当细胞处于I型胶原水凝胶中,随着胶基质刚度增加,脉冲频率有所下调。结论Jurkat T细胞中存在自发的ERK活性脉冲现象,初步实验显示其频率受基质刚度影响。而该信号波动的生理意义和分子机制仍有待探索。展开更多
ERK is involved in multiple cell signaling pathways through its interacting proteins. By </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i> <i><s...ERK is involved in multiple cell signaling pathways through its interacting proteins. By </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i> <i><span style="font-size:12px;font-family:Verdana;">silico</span></i><span style="font-size:12px;font-family:Verdana;"> analysis, earlier we have identified 22 putative ERK interacting proteins namely;ephrin type-B receptor 2 isoform 2 precursor (EPHB2), mitogen-activated protein kinase 1</span></span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">(MAPK1), interleukin-17 receptor D precursor (IL17RD), WD repeat domain containing 83 (WDR83), </span><span style="font-size:12px;font-family:Verdana;">tescalcin (Tesc), mitogen-activated protein kinase kinase kinase 4 (MAPP3K4),</span><span style="font-size:12px;font-family:Verdana;"> kinase suppressor of Ras2 (KSR2), mitogen-activated protein kinase kinase 6 (MAP3K6), UL16 binding protein 2 (ULBP2), UL16 binding protein 1 (ULBP1), dual specificity phosphatase 14 (DUSP14), dual specificity phosphatase 6 (DUSP6), hyaluronan-mediated motility receptor (RHAMM), kinase D interacting substrate of 220</span></span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">kDa (KININS220), membrane-associated guanylate kinase (MAGI3), phosphoprotein enriched in astrocytes 15</span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">(PEA15), typtophenyl-tRNA synthetase, cytoplasmic (WARS), dual specificity phosphatase 9 (DUSP9), mitogen-activated protein kinase kinase kinase 1</span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">(MAP3K1), UL16 binding protein 3 (ULBP3), SLAM family member 7 isoform a precursor (SLAMMF7) and mitogen activated protein kinase kinase kinase 11 (MAP3K11) (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T1"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 1</span></b></a></span><span "="" style="font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">). However, prediction of secondary structure and domain/motif present in aforementioned ERK interacting proteins is not studied. In this paper, </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i></span><i><span style="font-size:10.0pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;" "="">silico</span></i><span "="" style="font-size:12px;font-family:Verdana;"> prediction of secondary structure of ERK interacting proteins was done by SOPMA and motif/domain identification using motif search. Briefly, SOPMA predicted higher random coil and alpha helix percentage in these proteins (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T2"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 2</span></b></a></span><span "="" style="font-size:12px;font-family:Verdana;">)</span><span "="" style="font-size:12px;font-family:Verdana;"> and</span><span "="" style="font-size:12px;font-family:Verdana;"> motif scan predicted serine/threonine kinases active site signature and protein kinase ATP binding region in majority of ERK interacting proteins. Moreover, few have commonly dual specificity protein phosphatase family and tyrosine specific protein phosphatase domains (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T3"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 3</span></b></a></span><span "="" style="font-size:12px;font-family:Verdana;">). Such study may be helpful to design engineered molecules for regulating ERK dependent pathways in disease condition.展开更多
文摘目的探索Jurkat T细胞中胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)活性动力学以及基质刚度对ERK活性的影响。方法利用荧光共振能量转移(fluorescence resonance energy transfer,FRET)技术实时观测Jurkat细胞中ERK活性的变化,或细胞处于I型胶原基质胶中检测其影响。结果部分Jurkat细胞中存在ERK活性脉冲现象,频率约为3次/h,FRET振幅变化约为20%。在抗体激活T细胞抗原受体(T-cell receptor,TCR)的条件下,ERK脉冲依然存在,频率和振幅无显著变化。当细胞处于I型胶原水凝胶中,随着胶基质刚度增加,脉冲频率有所下调。结论Jurkat T细胞中存在自发的ERK活性脉冲现象,初步实验显示其频率受基质刚度影响。而该信号波动的生理意义和分子机制仍有待探索。
文摘ERK is involved in multiple cell signaling pathways through its interacting proteins. By </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i> <i><span style="font-size:12px;font-family:Verdana;">silico</span></i><span style="font-size:12px;font-family:Verdana;"> analysis, earlier we have identified 22 putative ERK interacting proteins namely;ephrin type-B receptor 2 isoform 2 precursor (EPHB2), mitogen-activated protein kinase 1</span></span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">(MAPK1), interleukin-17 receptor D precursor (IL17RD), WD repeat domain containing 83 (WDR83), </span><span style="font-size:12px;font-family:Verdana;">tescalcin (Tesc), mitogen-activated protein kinase kinase kinase 4 (MAPP3K4),</span><span style="font-size:12px;font-family:Verdana;"> kinase suppressor of Ras2 (KSR2), mitogen-activated protein kinase kinase 6 (MAP3K6), UL16 binding protein 2 (ULBP2), UL16 binding protein 1 (ULBP1), dual specificity phosphatase 14 (DUSP14), dual specificity phosphatase 6 (DUSP6), hyaluronan-mediated motility receptor (RHAMM), kinase D interacting substrate of 220</span></span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">kDa (KININS220), membrane-associated guanylate kinase (MAGI3), phosphoprotein enriched in astrocytes 15</span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">(PEA15), typtophenyl-tRNA synthetase, cytoplasmic (WARS), dual specificity phosphatase 9 (DUSP9), mitogen-activated protein kinase kinase kinase 1</span><span "="" style="font-size:10pt;"> </span><span "="" style="font-size:12px;font-family:Verdana;">(MAP3K1), UL16 binding protein 3 (ULBP3), SLAM family member 7 isoform a precursor (SLAMMF7) and mitogen activated protein kinase kinase kinase 11 (MAP3K11) (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T1"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 1</span></b></a></span><span "="" style="font-size:10pt;"><span style="font-size:12px;font-family:Verdana;">). However, prediction of secondary structure and domain/motif present in aforementioned ERK interacting proteins is not studied. In this paper, </span><i><span style="font-size:12px;font-family:Verdana;">in</span></i></span><i><span style="font-size:10.0pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;" "="">silico</span></i><span "="" style="font-size:12px;font-family:Verdana;"> prediction of secondary structure of ERK interacting proteins was done by SOPMA and motif/domain identification using motif search. Briefly, SOPMA predicted higher random coil and alpha helix percentage in these proteins (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T2"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 2</span></b></a></span><span "="" style="font-size:12px;font-family:Verdana;">)</span><span "="" style="font-size:12px;font-family:Verdana;"> and</span><span "="" style="font-size:12px;font-family:Verdana;"> motif scan predicted serine/threonine kinases active site signature and protein kinase ATP binding region in majority of ERK interacting proteins. Moreover, few have commonly dual specificity protein phosphatase family and tyrosine specific protein phosphatase domains (</span><span "="" style="font-size:10pt;"><a href="file:///E:/%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2021/0225-wqs-%E5%B7%A5%E4%BD%9C%E8%AE%B0%E5%BD%95/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89(1)/2%E6%9C%88%20WJNS11.1%20%E6%8F%92%E9%A1%B5%E7%A0%81%20%E4%BB%98%E5%96%9C%E4%BB%81%20%EF%BC%887%EF%BC%89/7-1390595.docx#T3"><b><span color:#943634;"="" style="font-size: 12px;font-family: Verdana;">Table 3</span></b></a></span><span "="" style="font-size:12px;font-family:Verdana;">). Such study may be helpful to design engineered molecules for regulating ERK dependent pathways in disease condition.