Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the pho...Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.展开更多
The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein ...The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected C13K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C 13K cells were 2.04 ± 0.10, 0.94± 0.04 respectively and the expression of p-Akt protein ( 0.94± 0.07) was lower than those in control groups (1.68 ±0.14, 1.66± 0.10) (P〈 0.05). The IC50 of DDP to C 13 K cells transfected with PTEN (7.2± 0.3 la mol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 lamol/1, 13.0±0.3 lamol/L) (P〈0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65___0.87)%, (18.61 ±0.70)% and (15.28±0.80)% respectively, and the difference was statistically significant (P〈0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the expression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C 13K with multidrug-resistance by decreasing the expression of p-Akt.展开更多
The clinical significance of phosphatase and tensin homolog deleted on chromosome ten (PTEN) protein expression and the correlation between the expression of PTEN and phosphorylation of protein kinase B (PKB/AKT) in h...The clinical significance of phosphatase and tensin homolog deleted on chromosome ten (PTEN) protein expression and the correlation between the expression of PTEN and phosphorylation of protein kinase B (PKB/AKT) in human hepatocellular carcinoma (HCC) were investigated. The expression of PTEN and phospho-AKT was detected by SP immunohistochemical technique and Western blotting in 35 cases of HCC, 15 cases of liver cirrhosis and 8 cases of normal tissues. The correlation between the expression of PTEN and PKB/AKT in HCC was analyzed. The results showed that the positive expression of PTEN in HCC (62.9 %, 0.085±0.021) was significantly lower than that in liver cirrhosis and normal tissues (P<0.01). The expression level of PTEN was related to the differentiation degree of HCC and the status of metastasis (P<0.05). Western blotting revealed a significant inverse correlation between PTEN and phospho-AKT (r=-0.818, P<0.01). These results demonstrated that down-regulation or loss of PTEN, which may not be able to effectively inhibit the hyper-phosphorylation of PKB/AKT, might play an important role in tumorigenesis and progression of HCC.展开更多
Urokinase plasminogen activator receptor (uPAR) plays a major role in cancer-invasion and metastasis and uPAR expression is correlated with a poor prognosis in various cancer types. Moreover, the expression of uPAR ...Urokinase plasminogen activator receptor (uPAR) plays a major role in cancer-invasion and metastasis and uPAR expression is correlated with a poor prognosis in various cancer types. Moreover, the expression of uPAR is increased under hypoxic conditions. Nitric oxide (NO) and its metabolites produced by inducible nitric oxide synthase (iNOS) are important products ofhypoxic stress, and NO may activate or modulate extracellular signal regulated kinase (ERK). Here, we evaluated uPA, uPAR, and activated ERK levels under hypoxic conditions, and the modulatory effects of iNOS and NO in the MDA-MB-231 human breast cancer cell line. Cells were incubated in a hypoxic or normoxic incubator and treated with PD98059 (a MEK 1/2 inhibitor, which abrogates ERK phosphorylation) and aminoguanidine (a selective iNOS inhibitor), uPAR expression, ERK phosphorylation, and uPA activity were found to be increased under hypoxic conditions. Moreover, when cells were treated with PD98059 under hypoxic conditions, uPAR was downregulated, whereas aminoguanidine markedly increased ERK phosphorylation in a dose dependent manner. Furthermore, aminoguanidine increased uPAR expression and prevented the inhibition of uPAR expression by PD98059. These results demonstrated that uPAR is induced by hypoxia and that increased uPAR expression is mediated by ERK phosphorylation, which in turn is modulated by iNOS/NO in MDA-MB-231 cells. We conclude that iNOS/NO downregulates the expression of uPAR under hypoxic conditions via ERK pathway modulation.展开更多
Objective: Hypoxia is an important feature of pancreatic ductal adenocarcinoma(PDAC). Previously, we found that hypoxia promotes ENO1 expression and PDAC invasion. However, the underlying molecular mechanism was remai...Objective: Hypoxia is an important feature of pancreatic ductal adenocarcinoma(PDAC). Previously, we found that hypoxia promotes ENO1 expression and PDAC invasion. However, the underlying molecular mechanism was remains unclear.Methods: The relationship between ENO1 expression and clinicopathological characteristics was analyzed in 84 patients with PADC. The effects of CoCl2-induced hypoxia and ENO1 downregulation on the apoptosis, invasion, and proliferation of PDAC cells were evaluated in vitro and in vivo. Hypoxia-and ENO1-induced gene expression was analyzed by transcriptomic sequencing.Results: The prognosis of PDAC with high ENO1 expression was poor(P < 0.05). High ENO1 expression was closely associated with histological differentiation and tumor invasion in 84 PDAC cases(P < 0.05). Hypoxia increased ENO1 expression in PDAC and promoted its migration and invasion. Apoptotic cells and the apoptosis marker caspase-3 in the CoCl_(2)-treated ENO1-sh group were significantly elevated(P < 0.05). Transcriptomic sequencing indicated that CoCl_(2)-induced PDAC cells initiated MAPK signaling. Under hypoxic conditions, PDAC cells upregulated ENO1 expression, thereby accelerating ERK phosphorylation and inhibiting apoptosis(P < 0.05). Consistent results were also observed in a PDAC-bearing mouse hindlimb ischemia model.Conclusions: Hypoxia-induced ENO1 expression promotes ERK phosphorylation and inhibits apoptosis, thus leading to PDAC survival and invasion. These results suggest that ENO1 is a potential therapeutic target for PDAC.展开更多
To screen for additional treatment targets against tongue cancer, we evaluated the contributions of extracellular signal-related kinase(ERK), AKT and ezrin in cancer development. Immunohistochemical staining showed th...To screen for additional treatment targets against tongue cancer, we evaluated the contributions of extracellular signal-related kinase(ERK), AKT and ezrin in cancer development. Immunohistochemical staining showed that ERK and ezrin expressions were significantly higher in invasive squamous cell carcinoma than in carcinoma in situ. To investigate the roles of ERK and ezrin in cancer development, we used the non-woven silica fibre sheet Cellbedwith a structure resembling the loose connective tissue morphology in a novel 3 D culture system. We confirmed that the 3 D system using CellbedTMaccurately mimicked cancer cell morphology in vivo. Furthermore, cell projections were much more apparent in 3 D-cultured tongue cancer cell lines than in 2 D cultures. Typically, under conventional 2 D culture conditions, F-actin and cortactin are colocalized in the form of puncta within cells.However, in the 3 D-cultured cells, colocalization was mainly observed at the cell margins, including the projections. Projections containing F-actin and cortactin colocalization were predicted to be invadopodia. Although suppressing ezrin expression with small interfering RNA transfection caused no marked changes in morphology, cell projection formation was decreased, and the tumour thickness in vertical sections after 3 D culture was markedly decreased after suppressing ERK activity because both the invasion ability and proliferation were inhibited. An association between cortactin activation as well as ERK activity and invadopodia formation was detected. Our novel 3 D culture systems using Cellbed? are simple and useful for in vitro studies before conducting animal experiments. ERK contributes to tongue cancer development by increasing both cancer cell proliferation and migration via cortactin activation.展开更多
OBJECTIVE GubenyiliuⅡ(GYⅡ),a traditional Chinese medicine(TCM)formula used in our hospital,has shown beneficial effects in cancer patients.In this study,we investigated the molecular mechanisms underlying the benefi...OBJECTIVE GubenyiliuⅡ(GYⅡ),a traditional Chinese medicine(TCM)formula used in our hospital,has shown beneficial effects in cancer patients.In this study,we investigated the molecular mechanisms underlying the beneficial effects of GYⅡon murine breast cancer models.METHODS Inhibition of tumor growth and metastasis was evaluated by assessment of tumor weight and analysis of bioluminescent signal after a homograft inoculation.Viability of cultured breast cancer cells was determined using MTT assay andreal-time cell analysis(RTCA).Cell migratory ability was evaluated by Transwell?assay and wound healing assay.Subsequently,the potential anti-tumor and anti-metastatic mechanism was investigated by Western blotting and Immunohistochemistry.RESULTS GYⅡshowed significant inhibitory effects on tumor growth and metastasis in the murine breast cancer model.And GYⅡsuppressed theproliferation of 4T1 and MCF-7 cells in a dose-dependent manner.A better inhibitory effect on 4T1 cells proliferation and migration was found in sub-fractions(SF)of GYⅡ.Moreover,heparanase expression and degree of angiogenesis were reduced in tumor tissues.Western blotting analysis showed decreased expression of heparanase and growth factors in the cells treated with GYⅡand its sub-fractions(SF2 and SF3),there by a reduction in phosphorylation of ERK and AKT.CONCLUSION GYⅡexerts anti-tumor growth and anti-metastatic effects on murine breast cancer model.Sub-fractions 2 and 3 exhibits higher potency of the anti-tumor activity that is,at least partly,associated with decreased heparanase and growth factor sexpression,which subsequently sup-pressed activation of ERK and AKT pathways.展开更多
基金supported by the European Regional Development Funds-European Union(ERDF-EU),FATZHEIMER project(EU-LAC HEALTH 2020,16/T010131 to FRdF),“Una manera de hacer Europa”Ministerio de Economía,Industria y Competitividad,Gobierno de Espa?a,Programa Estatal de Investigación,Desarrollo e Innovación Orientada a los Retos de la Sociedad(RTC2019-007329-1 to FRdF)+2 种基金Consejería de Economía,Conocimiento y Universidad,Junta de Andalucía,Plan Andaluz de Investigación,Desarrollo e Innovación(P18TP-5194 to FRdF)Instituto de Salud CarlosⅢ(DTS22/00021 to FRdF)DMV(FI20/00227)holds a“PFIS’’predoctoral contract from the National System of Health,EU-ERDF-Instituto de Salud CarlosⅢ。
文摘Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
基金a grant from the National Natural Sciences Foundation of China (No. 30571950)National Key Basic Research Program Foundation (N0.2002CB513107).
文摘The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected C13K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C 13K cells were 2.04 ± 0.10, 0.94± 0.04 respectively and the expression of p-Akt protein ( 0.94± 0.07) was lower than those in control groups (1.68 ±0.14, 1.66± 0.10) (P〈 0.05). The IC50 of DDP to C 13 K cells transfected with PTEN (7.2± 0.3 la mol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 lamol/1, 13.0±0.3 lamol/L) (P〈0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65___0.87)%, (18.61 ±0.70)% and (15.28±0.80)% respectively, and the difference was statistically significant (P〈0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the expression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C 13K with multidrug-resistance by decreasing the expression of p-Akt.
文摘The clinical significance of phosphatase and tensin homolog deleted on chromosome ten (PTEN) protein expression and the correlation between the expression of PTEN and phosphorylation of protein kinase B (PKB/AKT) in human hepatocellular carcinoma (HCC) were investigated. The expression of PTEN and phospho-AKT was detected by SP immunohistochemical technique and Western blotting in 35 cases of HCC, 15 cases of liver cirrhosis and 8 cases of normal tissues. The correlation between the expression of PTEN and PKB/AKT in HCC was analyzed. The results showed that the positive expression of PTEN in HCC (62.9 %, 0.085±0.021) was significantly lower than that in liver cirrhosis and normal tissues (P<0.01). The expression level of PTEN was related to the differentiation degree of HCC and the status of metastasis (P<0.05). Western blotting revealed a significant inverse correlation between PTEN and phospho-AKT (r=-0.818, P<0.01). These results demonstrated that down-regulation or loss of PTEN, which may not be able to effectively inhibit the hyper-phosphorylation of PKB/AKT, might play an important role in tumorigenesis and progression of HCC.
文摘Urokinase plasminogen activator receptor (uPAR) plays a major role in cancer-invasion and metastasis and uPAR expression is correlated with a poor prognosis in various cancer types. Moreover, the expression of uPAR is increased under hypoxic conditions. Nitric oxide (NO) and its metabolites produced by inducible nitric oxide synthase (iNOS) are important products ofhypoxic stress, and NO may activate or modulate extracellular signal regulated kinase (ERK). Here, we evaluated uPA, uPAR, and activated ERK levels under hypoxic conditions, and the modulatory effects of iNOS and NO in the MDA-MB-231 human breast cancer cell line. Cells were incubated in a hypoxic or normoxic incubator and treated with PD98059 (a MEK 1/2 inhibitor, which abrogates ERK phosphorylation) and aminoguanidine (a selective iNOS inhibitor), uPAR expression, ERK phosphorylation, and uPA activity were found to be increased under hypoxic conditions. Moreover, when cells were treated with PD98059 under hypoxic conditions, uPAR was downregulated, whereas aminoguanidine markedly increased ERK phosphorylation in a dose dependent manner. Furthermore, aminoguanidine increased uPAR expression and prevented the inhibition of uPAR expression by PD98059. These results demonstrated that uPAR is induced by hypoxia and that increased uPAR expression is mediated by ERK phosphorylation, which in turn is modulated by iNOS/NO in MDA-MB-231 cells. We conclude that iNOS/NO downregulates the expression of uPAR under hypoxic conditions via ERK pathway modulation.
基金supported by grants from the National Natural Science Key Foundation of China(Grant No.82030092).
文摘Objective: Hypoxia is an important feature of pancreatic ductal adenocarcinoma(PDAC). Previously, we found that hypoxia promotes ENO1 expression and PDAC invasion. However, the underlying molecular mechanism was remains unclear.Methods: The relationship between ENO1 expression and clinicopathological characteristics was analyzed in 84 patients with PADC. The effects of CoCl2-induced hypoxia and ENO1 downregulation on the apoptosis, invasion, and proliferation of PDAC cells were evaluated in vitro and in vivo. Hypoxia-and ENO1-induced gene expression was analyzed by transcriptomic sequencing.Results: The prognosis of PDAC with high ENO1 expression was poor(P < 0.05). High ENO1 expression was closely associated with histological differentiation and tumor invasion in 84 PDAC cases(P < 0.05). Hypoxia increased ENO1 expression in PDAC and promoted its migration and invasion. Apoptotic cells and the apoptosis marker caspase-3 in the CoCl_(2)-treated ENO1-sh group were significantly elevated(P < 0.05). Transcriptomic sequencing indicated that CoCl_(2)-induced PDAC cells initiated MAPK signaling. Under hypoxic conditions, PDAC cells upregulated ENO1 expression, thereby accelerating ERK phosphorylation and inhibiting apoptosis(P < 0.05). Consistent results were also observed in a PDAC-bearing mouse hindlimb ischemia model.Conclusions: Hypoxia-induced ENO1 expression promotes ERK phosphorylation and inhibits apoptosis, thus leading to PDAC survival and invasion. These results suggest that ENO1 is a potential therapeutic target for PDAC.
文摘To screen for additional treatment targets against tongue cancer, we evaluated the contributions of extracellular signal-related kinase(ERK), AKT and ezrin in cancer development. Immunohistochemical staining showed that ERK and ezrin expressions were significantly higher in invasive squamous cell carcinoma than in carcinoma in situ. To investigate the roles of ERK and ezrin in cancer development, we used the non-woven silica fibre sheet Cellbedwith a structure resembling the loose connective tissue morphology in a novel 3 D culture system. We confirmed that the 3 D system using CellbedTMaccurately mimicked cancer cell morphology in vivo. Furthermore, cell projections were much more apparent in 3 D-cultured tongue cancer cell lines than in 2 D cultures. Typically, under conventional 2 D culture conditions, F-actin and cortactin are colocalized in the form of puncta within cells.However, in the 3 D-cultured cells, colocalization was mainly observed at the cell margins, including the projections. Projections containing F-actin and cortactin colocalization were predicted to be invadopodia. Although suppressing ezrin expression with small interfering RNA transfection caused no marked changes in morphology, cell projection formation was decreased, and the tumour thickness in vertical sections after 3 D culture was markedly decreased after suppressing ERK activity because both the invasion ability and proliferation were inhibited. An association between cortactin activation as well as ERK activity and invadopodia formation was detected. Our novel 3 D culture systems using Cellbed? are simple and useful for in vitro studies before conducting animal experiments. ERK contributes to tongue cancer development by increasing both cancer cell proliferation and migration via cortactin activation.
基金The project supported by National Natural Science Foundation of China(81202840,81373815)Specialized Research Fund for the Doctoral Program of Higher Education of China(20131107110014)+1 种基金Beijing Natural Science Foundation(7162084)Swedish Cancer Foundation(150815)
文摘OBJECTIVE GubenyiliuⅡ(GYⅡ),a traditional Chinese medicine(TCM)formula used in our hospital,has shown beneficial effects in cancer patients.In this study,we investigated the molecular mechanisms underlying the beneficial effects of GYⅡon murine breast cancer models.METHODS Inhibition of tumor growth and metastasis was evaluated by assessment of tumor weight and analysis of bioluminescent signal after a homograft inoculation.Viability of cultured breast cancer cells was determined using MTT assay andreal-time cell analysis(RTCA).Cell migratory ability was evaluated by Transwell?assay and wound healing assay.Subsequently,the potential anti-tumor and anti-metastatic mechanism was investigated by Western blotting and Immunohistochemistry.RESULTS GYⅡshowed significant inhibitory effects on tumor growth and metastasis in the murine breast cancer model.And GYⅡsuppressed theproliferation of 4T1 and MCF-7 cells in a dose-dependent manner.A better inhibitory effect on 4T1 cells proliferation and migration was found in sub-fractions(SF)of GYⅡ.Moreover,heparanase expression and degree of angiogenesis were reduced in tumor tissues.Western blotting analysis showed decreased expression of heparanase and growth factors in the cells treated with GYⅡand its sub-fractions(SF2 and SF3),there by a reduction in phosphorylation of ERK and AKT.CONCLUSION GYⅡexerts anti-tumor growth and anti-metastatic effects on murine breast cancer model.Sub-fractions 2 and 3 exhibits higher potency of the anti-tumor activity that is,at least partly,associated with decreased heparanase and growth factor sexpression,which subsequently sup-pressed activation of ERK and AKT pathways.