Objective:To investigate the effects of butylphthalide on reducing neuronal apoptosis in rats with cerebral infarction by inhibiting the JNK/P38 MAPK signaling pathway.Methods:Forty-eight SD male rats were divided int...Objective:To investigate the effects of butylphthalide on reducing neuronal apoptosis in rats with cerebral infarction by inhibiting the JNK/P38 MAPK signaling pathway.Methods:Forty-eight SD male rats were divided into DZ group(control group),CI group(model group)and NBP group(butylphthalide group).Rats in CI group and NBP group were used to establish cerebral infarction models.NBP group used NBP.The solution(80 mg/(kg?d))was administered orally,and the remaining two groups were administered with the same volume of peanut oil.After 14 consecutive days of treatment,the Zea Longa score was used to evaluate the neurological function of DZ,CI and NBP rats.Scoring,TTC staining was used to observe the cerebral infarction volume of rats in DZ group,CI group and NBP group,HE staining was used to observe the pathological morphology of brain tissue in DZ group,CI group and NBP group.Neuronal apoptosis,Western blot was used to detect the expression of p-JNK and p-p38MAPK in brain tissues of DZ group,CI group and NBP group.Results:The neurological function of the rats in the CI group was higher than that in the DZ group,and the difference was statistically significant(P<0.05).The neurological function score of the rats in the NBP group was reduced compared with the CI group,and the difference was statistically significant(P<0.05).The cerebral infarction volume in the group was 35.56%higher than that in the DZ group,and the difference was statistically significant(P<0.05).The minor infarct volume in the NBP group was 21.59%,which was less than that in the CI group,and the difference was statistically significant(P<0.05).Nerve cells are neatly sorted,with a large number.The gap between blood vessels and interstitial tissue in the CI group is enlarged,the cells are severely contracted,and the neuron structure is incomplete.Compared with the CI group,the NBP group has reduced neuron contraction and increased number;The dead nerve cells were brown.The apoptosis rate of nerve cells in the CI group was 79.65%higher than that in the DZ group was 5.82%.The difference was statistically significant(P<0.05).The nerve cell apoptosis rate in the NBP group was 30.23%.Compared with CI group,the difference was statistically significant(P<0.05);Western blot results showed that p-JNK and p-p38MAPK protein expression in CI group was higher than that in DZ group,and the difference was statistically significant(P<0.05).The levels of p-JNK and p-p38MAPK proteins in the NBP group were lower than those in the CI group.There was statistically significant(P<0.05).Conclusion:Butylphthalide can improve neurological damage,reduce apoptotic nerve cells,and reduce infarct volume in rats with cerebral infarction,which is related to the inhibition of JNK/P38 MAPK pathway expression.展开更多
The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve...The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.展开更多
Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, ...Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, Model Control Group, Chinese Medicine Treatment Group, and Western Medicine Treatment Group (hereinafter referred to as Blank Group, Model Group, Chinese Medicine Group, and Western Medicine Group), with 48 rats in each group. The mice were treated with p38MAPK-ERK5 on the 7th day, 14th day and 21st day, respectively, and the mice were treated for 28 days. The key targets and cytokines in p38MAPK-ERK5 signal transduction pathway were detected. Results: Compared with the Blank Group, the expression of p38MAPKmRNA in the hippocampus of the Model Group was increased. The Chinese Medicine Group and Western Medicine Group could reduce the expression of p38MAPK mRNA (P P P P Conclusion: The anti-inflammatory effect of JiaWeiWenDan Decoction may be related to the regulation of p38MAPK-ERK5 signaling pathway. With the advance of the treatment week, the best effect was obtained when the treatment was started on the 7th day of modeling.展开更多
Transforming growth factor-β utilizes a multitude of intracellular signaling pathways in addition to Smads to regulate a wide array of cellular functions. These non-canonical, non-Smad pathways are activated directly...Transforming growth factor-β utilizes a multitude of intracellular signaling pathways in addition to Smads to regulate a wide array of cellular functions. These non-canonical, non-Smad pathways are activated directly by ligandoccupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. These non-Smad pathways include various branches of MAP kinase pathways, Rho-like GTPase signaling pathways, and phosphatidylinositol-3-kinase/AKT pathways. This review focuses on recent advances in the understanding of the molecular and biochemical mechanisms of non-Smad pathways. In addition, functions of these non-Smad pathways are also discussed.展开更多
This study investigated the potential role of MAPK signaling pathways in conjunctivochalasis(CCH). Twenty loose conjunctival biopsy samples from 20 CCH and 15 conjunctival biopsy samples from 15 normal controls(CON) w...This study investigated the potential role of MAPK signaling pathways in conjunctivochalasis(CCH). Twenty loose conjunctival biopsy samples from 20 CCH and 15 conjunctival biopsy samples from 15 normal controls(CON) were collected. The conjunctival fibroblasts were cultured in vitro. Immunofluorescence, ELISA, Western blot and reverse transcription-polymerase chain reaction(RT-PCR) were used. Our results showed that the expression of p-ERK, p-JNK, and p-p38 in CCH conjunctiva was significantly higher than that in CON group. The expression of p38 MAPK, JNK, and ERK proteins in CCH fibroblasts was significantly higher than that in CON group. The total expression of MAPK m RNA in CCH fibroblasts was significantly higher than that in CON group. The activated forms of p38 MAPK, JNK, and ERK proteins and m RNAs might up-regulate the expression of MMPs in CCH loose conjunctival tissue and fibroblasts, causing the degradation of collagen fibers and elastic fibers and promoting the occurrence of CCH. Our results deepen the understanding of CCH pathological mechanism.展开更多
The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (M...The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-INL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.展开更多
OBJECTIVE To investigate the effect and the mechanisms of realgar transforming solution(RTS)on down-regulating over activated ras.METHODS we used the optimizing technical processes to obtain the RTS,and eval⁃uate the ...OBJECTIVE To investigate the effect and the mechanisms of realgar transforming solution(RTS)on down-regulating over activated ras.METHODS we used the optimizing technical processes to obtain the RTS,and eval⁃uate the mechanisms of RTS on down-regulating overactivated ras in Caenorhabditis elegans.RESULTS We found that the mRNA level of let60 and lin45 significantly decreased following exposure to RTS,but mRNA levels of mpk1 were not statistically significant in let60/ras(gf)mutant.RTS together with sorafenib(RAF inhibitors)significantly enhanced the activity of RTS on down-regulating overactivated ras more than RTS only,but 50μmol·L^-1 PD98059,a specific ERK inhibitor did not.Lin45 gene RNAi decreased the ability of RTS on down-regulating overactivated ras significantly,but mpk1 gene RNAi did not,indicating that the activity of RTS on down-regulating overactivated ras mainly through targeting to lin45/raf.In addition,RTS significantly increased mRNA level of pmk1/p38 and jnk1/jnk in let-60/ras(gf)mutant,50μmol·L^-1 SB203580(p38 inhibitor)and SP600125(JNK inhibitor)significantly attenuated the effects of RTS on down-regulating overactivated ras in some degree,and pmk1,jnk1 gene RNAi displayed the similar results,suggesting that P38 and JNK/MAPK pathways in some degree were involved in the effects of RTS on down-regulating overactivated ras in C.ele⁃gans.CONCLUSION Realgar transforming solution down-regulate the Ras/MAPK pathway through JNK and P38 MAPK pathways.展开更多
F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the...F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the antioxidative and anti-inflammatory effects of BA and its underlying mechanism are explored in F-2 toxin-triggered mouse ovarian damage.We found that BA alleviated the F-2 toxin-induced ovarian impairment by stimulating follicle growth,reducing inflammatory cell infiltration,repairing damaged mitochondria and endoplasmic reticulum.Simultaneously,BA not only reversed F-2 toxin-induced reduction of follicle stimulating hormone(FSH)and luteinizing hormone(LH)levels in the serum,but also restrained the protein expression of the estrogen receptors a(ERa)and ERβ.Moreover,BA restored the balance of F-2 toxin-induced ovarian redox system disorders.Subsequently,we found that 0.25 mg/kg BA played an anti-inflammatory role in the F-2 toxin-induced ovarian impairment by decreasing interleukin-1β(IL-1β).IL-6,and tumor necrosis factor-α(TNF-α)mRNA expression,as well as inhibiting p38 protein expression.These data demonstrated that BA exerts its protective effect on F-2 toxin-induced ovarian oxidative impairment and inflammation by inhibiting p38 expression,which implies a natural product-based medicine to ameliorate F-2 toxin-caused female reproductive toxicity and provides a detoxifying method for food contaminated by mycotoxin.展开更多
Objective To determine whether pravastatin exerts anti-oxidative effects on preventing aortic" atherosclerosis via modulating p38 MAPK pathway. Methods Male 8-week-old apoE^-/- mice fed a diet containing 1.25% choles...Objective To determine whether pravastatin exerts anti-oxidative effects on preventing aortic" atherosclerosis via modulating p38 MAPK pathway. Methods Male 8-week-old apoE^-/- mice fed a diet containing 1.25% cholesterol (wt/wt) were divided into pravastatin group administered with pravastatin (80 mg. kg ^-1· d^-1 ) and atherosclerosis group administered with PBS; and male 8-week-old C57BL/6J mice fed a normal diet were as control group ( n = 12 ). In thoracoabdominal aortas of mice, levels of Malondialdehyde ( MDA ) and activities of superoxide dismutase ( SOD ) were measured and expression of phosphorylated p38 MAPK ( p-p38 MAPK) and phosphorylated signal transducer and activator of transcr(ption 1 (pSTAT1) were examined by Western blotting. Results After eight weeks, atherosclerosis in aortic root was significantly prevented by pravastatin. In aortic atherosclerosis lesion, the level of MDA was significantly reduced; adversely the activity, of SOD was increased. Expressions of p-p38 MAPK and pSTAT1 were significantly decreased in aortic atherosclerosis lesion. Conclusion Our results suggests that anti-oxidative mechanisms of pravastatin preventing aortic atherosclerosis may partially depend on modulating p38 MAPK signal pathway.展开更多
Background:Triple-negative breast cancer(TNBC)is a type of highly invasive breast cancer with a poor prognosis.According to new research,long noncoding RNAs(lncRNAs)play a significant role in the progression of cancer...Background:Triple-negative breast cancer(TNBC)is a type of highly invasive breast cancer with a poor prognosis.According to new research,long noncoding RNAs(lncRNAs)play a significant role in the progression of cancer.Although the role of lncRNAs in breast cancer has been well reported,few studies have focused on TNBC.This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript(FOXCUT)in triple-negative breast cancer.Methods:Based on a bioinformatic analysis of the cancer genome atlas(TCGA)database,we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues,which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University.The functions of FOXCUT in proliferation,migration,and invasion were detected in vitro or in vivo.Luciferase assays and RNA immunoprecipitation(RIP)were performed to reveal that FOXCUT acted as a competitive endogenous RNA(ceRNA)for the microRNA miR-24-3p and consequently inhibited the degradation of p38.Results:lncRNA FOXCUT was markedly highly expressed in breast cancer,which was associated with poor prognosis in some cases.Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo.Mechanistically,FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38,which might act as an oncogene in breast cancer.Conclusion:Collectively,this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.展开更多
Purpose:Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure.However,long-term administration of mannitol in the treatment of cerebral edema trigger...Purpose:Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure.However,long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes.Given that neural stem cell(NSC)is a subpopulation of main regenerative cells in the central nervous system after injury,the effect of mannitol on NSC is still elusive.The present study aims to elucidate the role of mannitol in NSC proliferation.Methods:C57 mice were derived from the animal house of Zunyi Medical University.A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation.Initially,mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining.In order to investigate the impact of mannitol on NSC proliferation,both cell counting kit-8 assays and neurospheres formation assays were conducted.Thein vitro effects of mannitol were examined at various doses and time points.In order to elucidate the role of Aquaporin 4(AQP4)in the suppressive effect of mannitol on NSC proliferation,various assays including reverse transcription polymerase chain reaction,western blotting,and immunocytochemistry were conducted on control and mannitol-treated groups.Additionally,the phosphorylated p38(p-p38)was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation.Finally,to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent(MAPK)signaling pathway in the observed inhibition of NSC proliferation by mannitol,SB203580 was employed.All data were analyzed using SPSS 20.0 software(SPSS,Inc.,Chicago,IL).The statistical analysis among multiple comparisons was performed using one-way analysis of variance(ANOVA),followed by Turkey’’s post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test.Comparisons between 2 groups were determined using Student’s t-test,if the data exhibited a normal distribution using a Shapiro-Wilk normality test.Meanwhile,data were shown as median and interquartile range and analyzed using the Mann-WhitneyU test,if the data failed the normality test.A p<0.05 was considered as significant difference.Results:Primary NSC were isolated from the mice,and the characteristics were identified using immunostaining analysis.Thereafter,the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8,neurospheres formation,and immunostaining of Nestin and Ki67 assays.During the process of mannitol suppressing NSC proliferation,the expression of AQP4 mRNA and protein was downregulated,while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction,immunostaining,and western blotting assays.Subsequently,the administration of SB203580,one of the p38 MAPK signaling pathway inhibitors,partially abrogated this inhibitory effect resulting from mannitol,supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.Conclusions:Mannitol inhibits NSC proliferation through downregulating AQP4,while upregulating the expression of p-p38 MAPK.展开更多
Gonadotropin-releasing hormone (GnRH) is secreted from neurons within the hypothalamus and is necessary for reproductive function in all vertebrates. GnRH is also found in organs outside of the brain and plays an im...Gonadotropin-releasing hormone (GnRH) is secreted from neurons within the hypothalamus and is necessary for reproductive function in all vertebrates. GnRH is also found in organs outside of the brain and plays an important role in Leydig cell steroidogenesis in the testis. However, the signalling pathways mediating this function remain largely unknown. In this study, we investigated whether components of the mitogen-activated protein kinase (MAPK) pathways are involved in GnRH agonist (GnRHa)-induced testis steroidogenesis in rat Leydig cells. Primary cultures of rat Leydig cells were established. The expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and the production of testosterone in response to GnRHa were examined at different doses and for different durations by RT-PCR, Western blot analysis and radioimmunoassay (RIA). The effects of GnRHa on ERK1/2, JNK and p38 kinase activation were also investigated in the presence or absence of the MAPK inhibitor PD-98059 by Western blot analysis. GnRHa induced testosterone production and upregulated 3β-HSD expression at both the mRNA and protein levels; it also activated ERK1/2, but not JNK and p38 kinase. Although the maximum effects of GnRHa were observed at a concentration of 100 nmnol L-1 after 24 h, activation of ERKI/2 by GnRHa reached peak at 5 min and it returned to the basal level within 60 min. PD-98059 completely blocked the activation of ERKI/2, the upregulation of 3β-HSD and testosterone production. Our data show that GnRH positively regulates steroidogenesis via ERK signalling in rat Leydig cells. ERK1/2 activation by GnRH may be responsible for the induction of 3β-HSDgene expression and enzyme production, which may ultimately modulate steroidogenesis in rat Leydig cells.展开更多
AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK)...AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a significant statistical significance (P〈 0.01). CONCLUSION: IL-1β has a direct action on hepatic fibrosis by up-regulating TIMMP-1 mRNA expression in ratessionin in rate HSC.JNK and p38 mitogen-activated protein kinases (MAPKs) are involved in IL-1β-induced TIMMP-1 gene expression, and play a distinct role in this process, indicating that p38 and .INK pathways cooperatively mediate TIMP-1 mRNA expression in rat HSC.展开更多
基金Key research project of medical science of Hubei province
文摘Objective:To investigate the effects of butylphthalide on reducing neuronal apoptosis in rats with cerebral infarction by inhibiting the JNK/P38 MAPK signaling pathway.Methods:Forty-eight SD male rats were divided into DZ group(control group),CI group(model group)and NBP group(butylphthalide group).Rats in CI group and NBP group were used to establish cerebral infarction models.NBP group used NBP.The solution(80 mg/(kg?d))was administered orally,and the remaining two groups were administered with the same volume of peanut oil.After 14 consecutive days of treatment,the Zea Longa score was used to evaluate the neurological function of DZ,CI and NBP rats.Scoring,TTC staining was used to observe the cerebral infarction volume of rats in DZ group,CI group and NBP group,HE staining was used to observe the pathological morphology of brain tissue in DZ group,CI group and NBP group.Neuronal apoptosis,Western blot was used to detect the expression of p-JNK and p-p38MAPK in brain tissues of DZ group,CI group and NBP group.Results:The neurological function of the rats in the CI group was higher than that in the DZ group,and the difference was statistically significant(P<0.05).The neurological function score of the rats in the NBP group was reduced compared with the CI group,and the difference was statistically significant(P<0.05).The cerebral infarction volume in the group was 35.56%higher than that in the DZ group,and the difference was statistically significant(P<0.05).The minor infarct volume in the NBP group was 21.59%,which was less than that in the CI group,and the difference was statistically significant(P<0.05).Nerve cells are neatly sorted,with a large number.The gap between blood vessels and interstitial tissue in the CI group is enlarged,the cells are severely contracted,and the neuron structure is incomplete.Compared with the CI group,the NBP group has reduced neuron contraction and increased number;The dead nerve cells were brown.The apoptosis rate of nerve cells in the CI group was 79.65%higher than that in the DZ group was 5.82%.The difference was statistically significant(P<0.05).The nerve cell apoptosis rate in the NBP group was 30.23%.Compared with CI group,the difference was statistically significant(P<0.05);Western blot results showed that p-JNK and p-p38MAPK protein expression in CI group was higher than that in DZ group,and the difference was statistically significant(P<0.05).The levels of p-JNK and p-p38MAPK proteins in the NBP group were lower than those in the CI group.There was statistically significant(P<0.05).Conclusion:Butylphthalide can improve neurological damage,reduce apoptotic nerve cells,and reduce infarct volume in rats with cerebral infarction,which is related to the inhibition of JNK/P38 MAPK pathway expression.
文摘The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.
文摘Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, Model Control Group, Chinese Medicine Treatment Group, and Western Medicine Treatment Group (hereinafter referred to as Blank Group, Model Group, Chinese Medicine Group, and Western Medicine Group), with 48 rats in each group. The mice were treated with p38MAPK-ERK5 on the 7th day, 14th day and 21st day, respectively, and the mice were treated for 28 days. The key targets and cytokines in p38MAPK-ERK5 signal transduction pathway were detected. Results: Compared with the Blank Group, the expression of p38MAPKmRNA in the hippocampus of the Model Group was increased. The Chinese Medicine Group and Western Medicine Group could reduce the expression of p38MAPK mRNA (P P P P Conclusion: The anti-inflammatory effect of JiaWeiWenDan Decoction may be related to the regulation of p38MAPK-ERK5 signaling pathway. With the advance of the treatment week, the best effect was obtained when the treatment was started on the 7th day of modeling.
文摘Transforming growth factor-β utilizes a multitude of intracellular signaling pathways in addition to Smads to regulate a wide array of cellular functions. These non-canonical, non-Smad pathways are activated directly by ligandoccupied receptors to reinforce, attenuate, or otherwise modulate downstream cellular responses. These non-Smad pathways include various branches of MAP kinase pathways, Rho-like GTPase signaling pathways, and phosphatidylinositol-3-kinase/AKT pathways. This review focuses on recent advances in the understanding of the molecular and biochemical mechanisms of non-Smad pathways. In addition, functions of these non-Smad pathways are also discussed.
基金Supported by the Research Project of Health and Family Planning Commission in Shanghai(No.201840196)Yingcai Program of Putuo Hospital(No.2017202B)Yuying Program of Putuo Hospital(No.2016219A)
文摘This study investigated the potential role of MAPK signaling pathways in conjunctivochalasis(CCH). Twenty loose conjunctival biopsy samples from 20 CCH and 15 conjunctival biopsy samples from 15 normal controls(CON) were collected. The conjunctival fibroblasts were cultured in vitro. Immunofluorescence, ELISA, Western blot and reverse transcription-polymerase chain reaction(RT-PCR) were used. Our results showed that the expression of p-ERK, p-JNK, and p-p38 in CCH conjunctiva was significantly higher than that in CON group. The expression of p38 MAPK, JNK, and ERK proteins in CCH fibroblasts was significantly higher than that in CON group. The total expression of MAPK m RNA in CCH fibroblasts was significantly higher than that in CON group. The activated forms of p38 MAPK, JNK, and ERK proteins and m RNAs might up-regulate the expression of MMPs in CCH loose conjunctival tissue and fibroblasts, causing the degradation of collagen fibers and elastic fibers and promoting the occurrence of CCH. Our results deepen the understanding of CCH pathological mechanism.
基金supported by the Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period of China (2008ZX10001-002)Major Science and Technology Innovation Cross Project of the Chinese Academy of Sciences (KSCX1-YW-10)
文摘The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-INL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.
文摘OBJECTIVE To investigate the effect and the mechanisms of realgar transforming solution(RTS)on down-regulating over activated ras.METHODS we used the optimizing technical processes to obtain the RTS,and eval⁃uate the mechanisms of RTS on down-regulating overactivated ras in Caenorhabditis elegans.RESULTS We found that the mRNA level of let60 and lin45 significantly decreased following exposure to RTS,but mRNA levels of mpk1 were not statistically significant in let60/ras(gf)mutant.RTS together with sorafenib(RAF inhibitors)significantly enhanced the activity of RTS on down-regulating overactivated ras more than RTS only,but 50μmol·L^-1 PD98059,a specific ERK inhibitor did not.Lin45 gene RNAi decreased the ability of RTS on down-regulating overactivated ras significantly,but mpk1 gene RNAi did not,indicating that the activity of RTS on down-regulating overactivated ras mainly through targeting to lin45/raf.In addition,RTS significantly increased mRNA level of pmk1/p38 and jnk1/jnk in let-60/ras(gf)mutant,50μmol·L^-1 SB203580(p38 inhibitor)and SP600125(JNK inhibitor)significantly attenuated the effects of RTS on down-regulating overactivated ras in some degree,and pmk1,jnk1 gene RNAi displayed the similar results,suggesting that P38 and JNK/MAPK pathways in some degree were involved in the effects of RTS on down-regulating overactivated ras in C.ele⁃gans.CONCLUSION Realgar transforming solution down-regulate the Ras/MAPK pathway through JNK and P38 MAPK pathways.
基金supported by the National Natural Science Foundation of China (32273084)the Special Funds for Construction of Innovative Provinces in Hunan Province,China (2020NK2032)+2 种基金the Natural Science Foundation of Hunan Province,China (2020JJ4368)Innovation Foundation for Postgraduate of Hunan Province,China (CX20220670)Innovation Foundation for Postgraduate of Hunan Agricultural University,China (2022XC010)。
文摘F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the antioxidative and anti-inflammatory effects of BA and its underlying mechanism are explored in F-2 toxin-triggered mouse ovarian damage.We found that BA alleviated the F-2 toxin-induced ovarian impairment by stimulating follicle growth,reducing inflammatory cell infiltration,repairing damaged mitochondria and endoplasmic reticulum.Simultaneously,BA not only reversed F-2 toxin-induced reduction of follicle stimulating hormone(FSH)and luteinizing hormone(LH)levels in the serum,but also restrained the protein expression of the estrogen receptors a(ERa)and ERβ.Moreover,BA restored the balance of F-2 toxin-induced ovarian redox system disorders.Subsequently,we found that 0.25 mg/kg BA played an anti-inflammatory role in the F-2 toxin-induced ovarian impairment by decreasing interleukin-1β(IL-1β).IL-6,and tumor necrosis factor-α(TNF-α)mRNA expression,as well as inhibiting p38 protein expression.These data demonstrated that BA exerts its protective effect on F-2 toxin-induced ovarian oxidative impairment and inflammation by inhibiting p38 expression,which implies a natural product-based medicine to ameliorate F-2 toxin-caused female reproductive toxicity and provides a detoxifying method for food contaminated by mycotoxin.
文摘Objective To determine whether pravastatin exerts anti-oxidative effects on preventing aortic" atherosclerosis via modulating p38 MAPK pathway. Methods Male 8-week-old apoE^-/- mice fed a diet containing 1.25% cholesterol (wt/wt) were divided into pravastatin group administered with pravastatin (80 mg. kg ^-1· d^-1 ) and atherosclerosis group administered with PBS; and male 8-week-old C57BL/6J mice fed a normal diet were as control group ( n = 12 ). In thoracoabdominal aortas of mice, levels of Malondialdehyde ( MDA ) and activities of superoxide dismutase ( SOD ) were measured and expression of phosphorylated p38 MAPK ( p-p38 MAPK) and phosphorylated signal transducer and activator of transcr(ption 1 (pSTAT1) were examined by Western blotting. Results After eight weeks, atherosclerosis in aortic root was significantly prevented by pravastatin. In aortic atherosclerosis lesion, the level of MDA was significantly reduced; adversely the activity, of SOD was increased. Expressions of p-p38 MAPK and pSTAT1 were significantly decreased in aortic atherosclerosis lesion. Conclusion Our results suggests that anti-oxidative mechanisms of pravastatin preventing aortic atherosclerosis may partially depend on modulating p38 MAPK signal pathway.
基金funded by the National Natural Science Foundation of China(Nos.82072931 and 82002805)
文摘Background:Triple-negative breast cancer(TNBC)is a type of highly invasive breast cancer with a poor prognosis.According to new research,long noncoding RNAs(lncRNAs)play a significant role in the progression of cancer.Although the role of lncRNAs in breast cancer has been well reported,few studies have focused on TNBC.This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript(FOXCUT)in triple-negative breast cancer.Methods:Based on a bioinformatic analysis of the cancer genome atlas(TCGA)database,we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues,which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University.The functions of FOXCUT in proliferation,migration,and invasion were detected in vitro or in vivo.Luciferase assays and RNA immunoprecipitation(RIP)were performed to reveal that FOXCUT acted as a competitive endogenous RNA(ceRNA)for the microRNA miR-24-3p and consequently inhibited the degradation of p38.Results:lncRNA FOXCUT was markedly highly expressed in breast cancer,which was associated with poor prognosis in some cases.Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo.Mechanistically,FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38,which might act as an oncogene in breast cancer.Conclusion:Collectively,this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.
基金National Natural Science Foundation of China(no.82260385 and 82260254)Health commission of Guizhou Province(gzwkj2022-103)+1 种基金Chinese Ministry of Education(no.2020-39)Science and Technology Project of Guizhou province(no.20204Y149 and 2023580).
文摘Purpose:Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure.However,long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes.Given that neural stem cell(NSC)is a subpopulation of main regenerative cells in the central nervous system after injury,the effect of mannitol on NSC is still elusive.The present study aims to elucidate the role of mannitol in NSC proliferation.Methods:C57 mice were derived from the animal house of Zunyi Medical University.A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation.Initially,mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining.In order to investigate the impact of mannitol on NSC proliferation,both cell counting kit-8 assays and neurospheres formation assays were conducted.Thein vitro effects of mannitol were examined at various doses and time points.In order to elucidate the role of Aquaporin 4(AQP4)in the suppressive effect of mannitol on NSC proliferation,various assays including reverse transcription polymerase chain reaction,western blotting,and immunocytochemistry were conducted on control and mannitol-treated groups.Additionally,the phosphorylated p38(p-p38)was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation.Finally,to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent(MAPK)signaling pathway in the observed inhibition of NSC proliferation by mannitol,SB203580 was employed.All data were analyzed using SPSS 20.0 software(SPSS,Inc.,Chicago,IL).The statistical analysis among multiple comparisons was performed using one-way analysis of variance(ANOVA),followed by Turkey’’s post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test.Comparisons between 2 groups were determined using Student’s t-test,if the data exhibited a normal distribution using a Shapiro-Wilk normality test.Meanwhile,data were shown as median and interquartile range and analyzed using the Mann-WhitneyU test,if the data failed the normality test.A p<0.05 was considered as significant difference.Results:Primary NSC were isolated from the mice,and the characteristics were identified using immunostaining analysis.Thereafter,the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8,neurospheres formation,and immunostaining of Nestin and Ki67 assays.During the process of mannitol suppressing NSC proliferation,the expression of AQP4 mRNA and protein was downregulated,while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction,immunostaining,and western blotting assays.Subsequently,the administration of SB203580,one of the p38 MAPK signaling pathway inhibitors,partially abrogated this inhibitory effect resulting from mannitol,supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.Conclusions:Mannitol inhibits NSC proliferation through downregulating AQP4,while upregulating the expression of p-p38 MAPK.
文摘Gonadotropin-releasing hormone (GnRH) is secreted from neurons within the hypothalamus and is necessary for reproductive function in all vertebrates. GnRH is also found in organs outside of the brain and plays an important role in Leydig cell steroidogenesis in the testis. However, the signalling pathways mediating this function remain largely unknown. In this study, we investigated whether components of the mitogen-activated protein kinase (MAPK) pathways are involved in GnRH agonist (GnRHa)-induced testis steroidogenesis in rat Leydig cells. Primary cultures of rat Leydig cells were established. The expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and the production of testosterone in response to GnRHa were examined at different doses and for different durations by RT-PCR, Western blot analysis and radioimmunoassay (RIA). The effects of GnRHa on ERK1/2, JNK and p38 kinase activation were also investigated in the presence or absence of the MAPK inhibitor PD-98059 by Western blot analysis. GnRHa induced testosterone production and upregulated 3β-HSD expression at both the mRNA and protein levels; it also activated ERK1/2, but not JNK and p38 kinase. Although the maximum effects of GnRHa were observed at a concentration of 100 nmnol L-1 after 24 h, activation of ERKI/2 by GnRHa reached peak at 5 min and it returned to the basal level within 60 min. PD-98059 completely blocked the activation of ERKI/2, the upregulation of 3β-HSD and testosterone production. Our data show that GnRH positively regulates steroidogenesis via ERK signalling in rat Leydig cells. ERK1/2 activation by GnRH may be responsible for the induction of 3β-HSDgene expression and enzyme production, which may ultimately modulate steroidogenesis in rat Leydig cells.
文摘AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a significant statistical significance (P〈 0.01). CONCLUSION: IL-1β has a direct action on hepatic fibrosis by up-regulating TIMMP-1 mRNA expression in ratessionin in rate HSC.JNK and p38 mitogen-activated protein kinases (MAPKs) are involved in IL-1β-induced TIMMP-1 gene expression, and play a distinct role in this process, indicating that p38 and .INK pathways cooperatively mediate TIMP-1 mRNA expression in rat HSC.