Traditional Enterprise Resource Planning (ERP) systems with relational databases take weeks to deliver predictable insights instantly. The most accurate information is provided to companies to make the best decisions ...Traditional Enterprise Resource Planning (ERP) systems with relational databases take weeks to deliver predictable insights instantly. The most accurate information is provided to companies to make the best decisions through advanced analytics that examine the past and the future and capture information about the present. Integrating machine learning (ML) into financial ERP systems offers several benefits, including increased accuracy, efficiency, and cost savings. Also, ERP systems are crucial in overseeing different aspects of Human Capital Management (HCM) in organizations. The performance of the staff draws the interest of the management. In particular, to guarantee that the proper employees are assigned to the convenient task at the suitable moment, train and qualify them, and build evaluation systems to follow up their performance and an attempt to maintain the potential talents of workers. Also, predicting employee salaries correctly is necessary for the efficient distribution of resources, retaining talent, and ensuring the success of the organization as a whole. Conventional ERP system salary forecasting methods typically use static reports that only show the system’s current state, without analyzing employee data or providing recommendations. We designed and enforced a prototype to define to apply ML algorithms on Oracle EBS data to enhance employee evaluation using real-time data directly from the ERP system. Based on measurements of accuracy, the Random Forest algorithm enhanced the performance of this system. This model offers an accuracy of 90% on the balanced dataset.展开更多
Industry 4.0, or the Fourth Industrial Revolution, is based on digitized the manufacturing process and makes use of all digital tools so its combination of various digital technologies computers, ERP software, IoT, ma...Industry 4.0, or the Fourth Industrial Revolution, is based on digitized the manufacturing process and makes use of all digital tools so its combination of various digital technologies computers, ERP software, IoT, machine learning and AI techniques, Manufacturing Execution Systems (MES), and big data analytics to create a new, fully digitized manufacturing system. The Critical Success Factors (CSFs) of MES adoption are both a quantitative and qualitative measurement. We use the case of ready-made garments to improve each of the three Overall Equipment Efficiency (OEE) factors: Availability, Performance, and Quality. In this study, we adopt real-time management of production activities on the shop floor from order receipt to finished products, then measure the improvement.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
文摘Traditional Enterprise Resource Planning (ERP) systems with relational databases take weeks to deliver predictable insights instantly. The most accurate information is provided to companies to make the best decisions through advanced analytics that examine the past and the future and capture information about the present. Integrating machine learning (ML) into financial ERP systems offers several benefits, including increased accuracy, efficiency, and cost savings. Also, ERP systems are crucial in overseeing different aspects of Human Capital Management (HCM) in organizations. The performance of the staff draws the interest of the management. In particular, to guarantee that the proper employees are assigned to the convenient task at the suitable moment, train and qualify them, and build evaluation systems to follow up their performance and an attempt to maintain the potential talents of workers. Also, predicting employee salaries correctly is necessary for the efficient distribution of resources, retaining talent, and ensuring the success of the organization as a whole. Conventional ERP system salary forecasting methods typically use static reports that only show the system’s current state, without analyzing employee data or providing recommendations. We designed and enforced a prototype to define to apply ML algorithms on Oracle EBS data to enhance employee evaluation using real-time data directly from the ERP system. Based on measurements of accuracy, the Random Forest algorithm enhanced the performance of this system. This model offers an accuracy of 90% on the balanced dataset.
文摘Industry 4.0, or the Fourth Industrial Revolution, is based on digitized the manufacturing process and makes use of all digital tools so its combination of various digital technologies computers, ERP software, IoT, machine learning and AI techniques, Manufacturing Execution Systems (MES), and big data analytics to create a new, fully digitized manufacturing system. The Critical Success Factors (CSFs) of MES adoption are both a quantitative and qualitative measurement. We use the case of ready-made garments to improve each of the three Overall Equipment Efficiency (OEE) factors: Availability, Performance, and Quality. In this study, we adopt real-time management of production activities on the shop floor from order receipt to finished products, then measure the improvement.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.