Hydrogen production from palm oil mill effluent (POME) by Thermoanaerobacterium thermosaccharolyticum PSU-2 was investigated both in batch and continuous reactors using anaerobic sequencing batch reactor (ASBR) and co...Hydrogen production from palm oil mill effluent (POME) by Thermoanaerobacterium thermosaccharolyticum PSU-2 was investigated both in batch and continuous reactors using anaerobic sequencing batch reactor (ASBR) and continuous stirred tank reactor (CSTR). The hydrogen production determined from batch experiment of POME at an inoculum size of 0%, 10%, 20% and 30% (v/v) was 161, 201, 246 and 296 mL H2/g-COD with COD removal efficiency of 21%, 23%, 23% and 23%, respectively. Continuous hydrogen production was start-up with 30% (v/v) inoculum in both ASBR and CSTR reactors and more than 30% COD removal could be obtained at HRT of 4 days, corresponding to OLR of 11.3 g COD/ L·day. Similar hydrogen production rates of 2.05 and2.16 LH2/L. day were obtained from ASBR and CSTR, respectively. COD removal efficiency of ASBR was 37.7%, while it was 44.8% for CSTR. However, ASBR was stable in term of alkalinity, while the CSTR was stable in term of hydrogen production, soluble metabolites concentration and alkalinity. Therefore, the CSTR was found to be more stable in hydrogen production than ASBR under the same OLR.展开更多
文摘Hydrogen production from palm oil mill effluent (POME) by Thermoanaerobacterium thermosaccharolyticum PSU-2 was investigated both in batch and continuous reactors using anaerobic sequencing batch reactor (ASBR) and continuous stirred tank reactor (CSTR). The hydrogen production determined from batch experiment of POME at an inoculum size of 0%, 10%, 20% and 30% (v/v) was 161, 201, 246 and 296 mL H2/g-COD with COD removal efficiency of 21%, 23%, 23% and 23%, respectively. Continuous hydrogen production was start-up with 30% (v/v) inoculum in both ASBR and CSTR reactors and more than 30% COD removal could be obtained at HRT of 4 days, corresponding to OLR of 11.3 g COD/ L·day. Similar hydrogen production rates of 2.05 and2.16 LH2/L. day were obtained from ASBR and CSTR, respectively. COD removal efficiency of ASBR was 37.7%, while it was 44.8% for CSTR. However, ASBR was stable in term of alkalinity, while the CSTR was stable in term of hydrogen production, soluble metabolites concentration and alkalinity. Therefore, the CSTR was found to be more stable in hydrogen production than ASBR under the same OLR.