心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机...心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机制的心理咨询文本情感分类模型,根据时序对历史情感词分配权重,进而提高分类准确率。利用构建的心理健康情感词典分别提取对话双方的历史情感词序列,再将当前句和历史情感词序列输入到双向长短期记忆(BiLSTM)网络获取对应的特征向量,并利用艾宾浩斯遗忘曲线对历史情感词序列分配权重。通过AOA机制获得惯性特征和交互特征,并结合文本特征输入到分类层计算情感倾向概率。在公开数据集Emotional First Aid Dataset上的实验结果表明,相较于Caps-DGCN(Capsule network and Directional Graph Convolutional Network)模型,所提模型的F1值提高了1.55%。可见,所提模型可以有效提升心理咨询文本的情感分类效果。展开更多
针对基于视频的多模态情感分析中,通常在同一语义层次采用同一种注意力机制进行特征捕捉,而未能考虑模态间交互融合对情感分类的差异性,从而导致模态间融合特征提取不充分的问题,提出一种基于注意力机制的分层次交互融合多模态情感分析...针对基于视频的多模态情感分析中,通常在同一语义层次采用同一种注意力机制进行特征捕捉,而未能考虑模态间交互融合对情感分类的差异性,从而导致模态间融合特征提取不充分的问题,提出一种基于注意力机制的分层次交互融合多模态情感分析模型(hierarchical interactive fusion network based on attention mechanism,HFN-AM),采用双向门控循环单元捕获各模态内部的时间序列信息,使用基于门控的注意力机制和改进的自注意机制交互融合策略分别提取属于句子级和篇章级层次的不同特征,并进一步通过自适应权重分配模块判定各模态的情感贡献度,通过全连接层和Softmax层获得最终分类结果。在公开的CMU-MOSI和CMU-MOSEI数据集上的实验结果表明,所给出的分析模型在2个数据集上有效改善了情感分类的准确率和F1值。展开更多
文摘心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机制的心理咨询文本情感分类模型,根据时序对历史情感词分配权重,进而提高分类准确率。利用构建的心理健康情感词典分别提取对话双方的历史情感词序列,再将当前句和历史情感词序列输入到双向长短期记忆(BiLSTM)网络获取对应的特征向量,并利用艾宾浩斯遗忘曲线对历史情感词序列分配权重。通过AOA机制获得惯性特征和交互特征,并结合文本特征输入到分类层计算情感倾向概率。在公开数据集Emotional First Aid Dataset上的实验结果表明,相较于Caps-DGCN(Capsule network and Directional Graph Convolutional Network)模型,所提模型的F1值提高了1.55%。可见,所提模型可以有效提升心理咨询文本的情感分类效果。
文摘针对基于视频的多模态情感分析中,通常在同一语义层次采用同一种注意力机制进行特征捕捉,而未能考虑模态间交互融合对情感分类的差异性,从而导致模态间融合特征提取不充分的问题,提出一种基于注意力机制的分层次交互融合多模态情感分析模型(hierarchical interactive fusion network based on attention mechanism,HFN-AM),采用双向门控循环单元捕获各模态内部的时间序列信息,使用基于门控的注意力机制和改进的自注意机制交互融合策略分别提取属于句子级和篇章级层次的不同特征,并进一步通过自适应权重分配模块判定各模态的情感贡献度,通过全连接层和Softmax层获得最终分类结果。在公开的CMU-MOSI和CMU-MOSEI数据集上的实验结果表明,所给出的分析模型在2个数据集上有效改善了情感分类的准确率和F1值。