Searching and designing new materials play crucial roles in the development of energy storage devices. In today's world where machine learning technology has shown strong predictive ability for various tasks, the ...Searching and designing new materials play crucial roles in the development of energy storage devices. In today's world where machine learning technology has shown strong predictive ability for various tasks, the combination with machine learning technology will accelerate the process of material development. Herein, we develop ESM Cloud Toolkit for energy storage materials based on Mat Elab platform, which is designed as a convenient and accurate way to automatically record and save the raw data of scientific research. The ESM Cloud Toolkit includes multiple features such as automatic archiving of computational simulation data, post-processing of experimental data, and machine learning applications. It makes the entire research workflow more automated and reduces the entry barrier for the application of machine learning technology in the domain of energy storage materials. It integrates data archive, traceability, processing, and reutilization, and allows individual research data to play a greater role in the era of AI.展开更多
主要评估了美国国家大气研究中心的NCAR CESM(Community Earth System Model,NCAR)和中国科学院的CAS ESM(Earth System Model,Chinese Academy of Sciences)两个地球系统模式对亚洲东部夏季气候态的模拟性能。使用NCAR CESM和CAS ESM...主要评估了美国国家大气研究中心的NCAR CESM(Community Earth System Model,NCAR)和中国科学院的CAS ESM(Earth System Model,Chinese Academy of Sciences)两个地球系统模式对亚洲东部夏季气候态的模拟性能。使用NCAR CESM和CAS ESM各两种不同的水平分辨率,一共进行了4组长达19年(1998~2016年)的数值积分试验,并通过对2 m气温、降水强度和降水日变化等的分析,比较了这两个模式在亚洲东部的模拟性能。结果表明,CAS ESM和NCAR CESM均能模拟出夏季2 m气温和降水强度的大尺度分布特征,但整体上模拟得到的地表面气温偏暖、降水强度偏弱。对于降水日变化而言,观测的日降水峰值在陆地上主要发生在下午到傍晚时段,在海洋上则出现在午夜到凌晨时段。两组低分辨率试验模拟的陆地降水峰值出现过早,且无法模拟出四川盆地的夜间降水峰值和部分海洋地区凌晨或上午的降水峰值。提高分辨率对模式的模拟性能有显著的提升作用。高分辨率下,NCAR CESM和CAS ESM对陆地和海洋的降水日变化模拟性能都明显提高。对降水日变化的定量化分析表明,高分辨率CAS ESM模式对整个亚洲东部降水日变化的模拟最优。目前模式对海陆风的模拟还不太理想,未来要进一步提高模式模拟性能,需要重点完善与气温、降水过程相关的物理参数化方案。展开更多
本文评估了地球系统模式FIO-ESM(First Institute of Oceanography-Earth System Model)基于集合调整Kalman滤波同化实验对1992-2013年北极海冰的模拟能力。结果显示:尽管同化资料只包括了全球海表温度和全球海面高度异常两类数据,而并...本文评估了地球系统模式FIO-ESM(First Institute of Oceanography-Earth System Model)基于集合调整Kalman滤波同化实验对1992-2013年北极海冰的模拟能力。结果显示:尽管同化资料只包括了全球海表温度和全球海面高度异常两类数据,而并没有对海冰进行同化,但实验结果能很好地模拟出与观测相符的北极海冰基本态和长期变化趋势,卫星观测和FIO-ESM同化实验所得的北极海冰覆盖范围在1992-2013年间的线性变化趋势分别为-7.06×105和-6.44×105 km2/(10a),同化所得的逐月海冰覆盖范围异常和卫星观测之间的相关系数为0.78。与FIO-ESM参加CMIP5(Coupled Model Intercomparison Project Phase 5)实验结果相比,该同化结果所模拟的北极海冰覆盖范围的长期变化趋势和海冰密集度的空间变化趋势均与卫星观测更加吻合,这说明该同化可为利用FIO-ESM开展北极短期气候预测提供较好的预测初始场。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 52022106 and 52172258)the Informatization Plan of Chinese Academy of Sciences (Grant No. CASWX2021SF-0102)。
文摘Searching and designing new materials play crucial roles in the development of energy storage devices. In today's world where machine learning technology has shown strong predictive ability for various tasks, the combination with machine learning technology will accelerate the process of material development. Herein, we develop ESM Cloud Toolkit for energy storage materials based on Mat Elab platform, which is designed as a convenient and accurate way to automatically record and save the raw data of scientific research. The ESM Cloud Toolkit includes multiple features such as automatic archiving of computational simulation data, post-processing of experimental data, and machine learning applications. It makes the entire research workflow more automated and reduces the entry barrier for the application of machine learning technology in the domain of energy storage materials. It integrates data archive, traceability, processing, and reutilization, and allows individual research data to play a greater role in the era of AI.
文摘主要评估了美国国家大气研究中心的NCAR CESM(Community Earth System Model,NCAR)和中国科学院的CAS ESM(Earth System Model,Chinese Academy of Sciences)两个地球系统模式对亚洲东部夏季气候态的模拟性能。使用NCAR CESM和CAS ESM各两种不同的水平分辨率,一共进行了4组长达19年(1998~2016年)的数值积分试验,并通过对2 m气温、降水强度和降水日变化等的分析,比较了这两个模式在亚洲东部的模拟性能。结果表明,CAS ESM和NCAR CESM均能模拟出夏季2 m气温和降水强度的大尺度分布特征,但整体上模拟得到的地表面气温偏暖、降水强度偏弱。对于降水日变化而言,观测的日降水峰值在陆地上主要发生在下午到傍晚时段,在海洋上则出现在午夜到凌晨时段。两组低分辨率试验模拟的陆地降水峰值出现过早,且无法模拟出四川盆地的夜间降水峰值和部分海洋地区凌晨或上午的降水峰值。提高分辨率对模式的模拟性能有显著的提升作用。高分辨率下,NCAR CESM和CAS ESM对陆地和海洋的降水日变化模拟性能都明显提高。对降水日变化的定量化分析表明,高分辨率CAS ESM模式对整个亚洲东部降水日变化的模拟最优。目前模式对海陆风的模拟还不太理想,未来要进一步提高模式模拟性能,需要重点完善与气温、降水过程相关的物理参数化方案。
文摘本文评估了地球系统模式FIO-ESM(First Institute of Oceanography-Earth System Model)基于集合调整Kalman滤波同化实验对1992-2013年北极海冰的模拟能力。结果显示:尽管同化资料只包括了全球海表温度和全球海面高度异常两类数据,而并没有对海冰进行同化,但实验结果能很好地模拟出与观测相符的北极海冰基本态和长期变化趋势,卫星观测和FIO-ESM同化实验所得的北极海冰覆盖范围在1992-2013年间的线性变化趋势分别为-7.06×105和-6.44×105 km2/(10a),同化所得的逐月海冰覆盖范围异常和卫星观测之间的相关系数为0.78。与FIO-ESM参加CMIP5(Coupled Model Intercomparison Project Phase 5)实验结果相比,该同化结果所模拟的北极海冰覆盖范围的长期变化趋势和海冰密集度的空间变化趋势均与卫星观测更加吻合,这说明该同化可为利用FIO-ESM开展北极短期气候预测提供较好的预测初始场。