针对基于ZigBee网络的节点接收信号强度指示(received signal strength indication,RSSI)在复杂环境测量会产生偏差的问题,提出一种基于混合滤波的无线网络测距算法。该方法在运用卡尔曼滤波的基础上融合了基于中值自适应加权高斯滤波...针对基于ZigBee网络的节点接收信号强度指示(received signal strength indication,RSSI)在复杂环境测量会产生偏差的问题,提出一种基于混合滤波的无线网络测距算法。该方法在运用卡尔曼滤波的基础上融合了基于中值自适应加权高斯滤波的混合滤波,首先用卡尔曼滤波算法去除波动性较大的RSSI值,再利用中位值抗差性原理和自适应函数降低RSSI数据的波动。仿真实验结果表明,混合滤波无线网络测距算法能够较大程度减小异常值带来的波动,有效提高RSSI采样精度。展开更多
准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法...准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。展开更多
文摘针对基于ZigBee网络的节点接收信号强度指示(received signal strength indication,RSSI)在复杂环境测量会产生偏差的问题,提出一种基于混合滤波的无线网络测距算法。该方法在运用卡尔曼滤波的基础上融合了基于中值自适应加权高斯滤波的混合滤波,首先用卡尔曼滤波算法去除波动性较大的RSSI值,再利用中位值抗差性原理和自适应函数降低RSSI数据的波动。仿真实验结果表明,混合滤波无线网络测距算法能够较大程度减小异常值带来的波动,有效提高RSSI采样精度。
文摘准确估计蓄电池荷电状态(state of charge,SOC)对于蓄电池的健康管理具有重要意义。现有SOC估算方法普遍存在复杂性高、自适应较弱的问题,更偏重于理论分析,难以满足实际在线监测的应用场景。为提高SOC估算过程的自适应性以及降低算法应用的复杂性,提出了一种适用于在线监测应用场景的基于蜣螂优化算法和自适应无迹卡尔曼滤波的SOC估计算法。将二阶Thevenin等效电路作为蓄电池的模型,利用蜣螂优化算法对该模型的关键参数进行自适应辨识,根据所辨识的参数,利用自适应无迹卡尔曼滤波算法对SOC进行估算。为了验证该算法的有效性,利用锂离子电池不同动态工况的实验数据进行了测试。实验结果表明,在初始参数设置模糊或不准确的情况下,该算法依然能够自适应地获取精度更高的SOC估计结果,具有更好的鲁棒性。