以盆栽的C4植物-湖南稷子 Echinochloafrumentacea 为材料,用6-苄氨基嘌呤 BA 和脱落酸 ABA 定位涂抹湖南稷子的穗、上位和下位叶片,分析了植物体激素平衡的局部改变对整株水平上Na+、K+和游离脯氨酸分配的调节.实验结果表明,ABA和具有...以盆栽的C4植物-湖南稷子 Echinochloafrumentacea 为材料,用6-苄氨基嘌呤 BA 和脱落酸 ABA 定位涂抹湖南稷子的穗、上位和下位叶片,分析了植物体激素平衡的局部改变对整株水平上Na+、K+和游离脯氨酸分配的调节.实验结果表明,ABA和具有细胞分裂素活性的BA是调控Na+、K+及游离脯氨酸在不同层位叶中分配的重要因素.ABA涂抹湖南稷子的上位叶片,上位叶片中的Na+比其下位叶片高35.0%;用ABA涂抹湖南稷子的下位叶片,下位叶片中的K+比其上位叶片高31.4%,下位叶鞘中的K+比其上位叶鞘高53.7%.用BA涂抹湖南稷子的下位叶片,下位叶片中的K+和脯氨酸分别比其上位叶片高16.5%和31.7%;用BA或ABA定位涂抹植物地上不同部位,引起植物整株水平上Na+、K+向光合作用强的部位,特别是向活跃期的穗中选择性运输的能力增强,游离脯氨酸也多集中于代谢旺盛的光合器官和生殖器官.展开更多
Thermoelectric properties of Li-doped Sr0.70Ba0.30Nb2O6-δ ceramics were investigated in the temperature range from 323 K to 1073 K. The electrical conductivity increases significantly after lithium interstitial dopin...Thermoelectric properties of Li-doped Sr0.70Ba0.30Nb2O6-δ ceramics were investigated in the temperature range from 323 K to 1073 K. The electrical conductivity increases significantly after lithium interstitial doping. However, both of the magnitudes of Seebeck coefficient and electrical conductivity vary non-monotonically but synchronously with the doping contents, indicating that doped lithium ions may not be fully ionized and oxygen vacancy may also contribute to carriers. The lattice thermal conductivity increases firstly and then decreases as the doping content increases, which is affected by competing factors.Thermoelectric performance is enhanced by lithium interstitial doping due to the increase of the power factor and the thermoelectric figure of merit reaches maximum value (0.21 at 1073 K) in the sample Sr0.70Ba0.30Li0.10Nb2O6.展开更多
The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are do...The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high- temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be -0.19 at 1073 K in the heaviest oxygen reduced sample.展开更多
High-resolution atomic-beam laser spectroscopy has been performed to study Stark effect of Ba atom. Stark spectra have been observed at various electric fields for Ba highly excited states. The scalar polarizability o...High-resolution atomic-beam laser spectroscopy has been performed to study Stark effect of Ba atom. Stark spectra have been observed at various electric fields for Ba highly excited states. The scalar polarizability of the transition from 6s5d3D2 to 5d6p3F3 at 728.0 nm and the tensor polarizability of the 3F3 level have been determined for the first time, to be αs = -89.8 (12) kHz/(kV/cm)2 and αt = -133.7 (20) kHz/(kV/cm)2, respectively.展开更多
文摘以盆栽的C4植物-湖南稷子 Echinochloafrumentacea 为材料,用6-苄氨基嘌呤 BA 和脱落酸 ABA 定位涂抹湖南稷子的穗、上位和下位叶片,分析了植物体激素平衡的局部改变对整株水平上Na+、K+和游离脯氨酸分配的调节.实验结果表明,ABA和具有细胞分裂素活性的BA是调控Na+、K+及游离脯氨酸在不同层位叶中分配的重要因素.ABA涂抹湖南稷子的上位叶片,上位叶片中的Na+比其下位叶片高35.0%;用ABA涂抹湖南稷子的下位叶片,下位叶片中的K+比其上位叶片高31.4%,下位叶鞘中的K+比其上位叶鞘高53.7%.用BA涂抹湖南稷子的下位叶片,下位叶片中的K+和脯氨酸分别比其上位叶片高16.5%和31.7%;用BA或ABA定位涂抹植物地上不同部位,引起植物整株水平上Na+、K+向光合作用强的部位,特别是向活跃期的穗中选择性运输的能力增强,游离脯氨酸也多集中于代谢旺盛的光合器官和生殖器官.
基金supported by the National Basic Research Program of China(Grant No.2013CB632506)the National Natural Science Foundation of China(Grant Nos.51202132,51231007,and 11374186)
文摘Thermoelectric properties of Li-doped Sr0.70Ba0.30Nb2O6-δ ceramics were investigated in the temperature range from 323 K to 1073 K. The electrical conductivity increases significantly after lithium interstitial doping. However, both of the magnitudes of Seebeck coefficient and electrical conductivity vary non-monotonically but synchronously with the doping contents, indicating that doped lithium ions may not be fully ionized and oxygen vacancy may also contribute to carriers. The lattice thermal conductivity increases firstly and then decreases as the doping content increases, which is affected by competing factors.Thermoelectric performance is enhanced by lithium interstitial doping due to the increase of the power factor and the thermoelectric figure of merit reaches maximum value (0.21 at 1073 K) in the sample Sr0.70Ba0.30Li0.10Nb2O6.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632506)the National Natural Science Foundation of China(Grant Nos.51202132 and 51002087)
文摘The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high- temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be -0.19 at 1073 K in the heaviest oxygen reduced sample.
文摘High-resolution atomic-beam laser spectroscopy has been performed to study Stark effect of Ba atom. Stark spectra have been observed at various electric fields for Ba highly excited states. The scalar polarizability of the transition from 6s5d3D2 to 5d6p3F3 at 728.0 nm and the tensor polarizability of the 3F3 level have been determined for the first time, to be αs = -89.8 (12) kHz/(kV/cm)2 and αt = -133.7 (20) kHz/(kV/cm)2, respectively.