【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechan...【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.展开更多
Mapping from remote sensing has become more effective in the field of geology, mainly in lithological discrimination and identification of hydrothermal alteration zones. The use of this technique consists in obtaining...Mapping from remote sensing has become more effective in the field of geology, mainly in lithological discrimination and identification of hydrothermal alteration zones. The use of this technique consists in obtaining information about the rock mass and the main ones existing in the inaccessible areas. Satellite data from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor represent a favorable potential for detecting the spectral signatures of mineral zones and identifying their nature. These data are more reliable in places where the climate is arid with less abundant vegetation, as at the Oumjrane-Boukerzia mining district. This region which is part of the Eastern Anti-Atlas, is composed of several mineralized veins which still require detailed studies and exploration by the technique of remote sensing. In this work we applied several processing techniques on ASTER imagery such as Colored Composition, Principal Component Analysis and Ratio Bands. The use of the reports of the specialized Bands makes it possible to identify some hydrothermal alteration minerals within the mining district of Oumjrane Boukerzia. These minerals are represented mainly by iron oxides and hydroxides (Hematite, jarosite, limonite and goethite), carbonate minerals (dolomite, calcite), clay minerals (Illite, kaolinite and chlorite) and quartz minerals. This work allows us to produce a map of hydrothermal alteration zones which can be used as a valuable reference in the strategy of mining exploration for the base metals (Cu, Pb, Zn and Ba), in the mining district of Oumjrane-Boukerzia and in the entire Eastern Anti-Atlas.展开更多
基金Guangxi Natural Science Foundation(2024GXNSFAA010469,2021GXNSFBA196028)Science and Technology Development Project of Guangxi Academy of Agricultural Sciences(Guinongke 2021YT137,Guinongke 2022JM86)。
文摘【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.
文摘Mapping from remote sensing has become more effective in the field of geology, mainly in lithological discrimination and identification of hydrothermal alteration zones. The use of this technique consists in obtaining information about the rock mass and the main ones existing in the inaccessible areas. Satellite data from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor represent a favorable potential for detecting the spectral signatures of mineral zones and identifying their nature. These data are more reliable in places where the climate is arid with less abundant vegetation, as at the Oumjrane-Boukerzia mining district. This region which is part of the Eastern Anti-Atlas, is composed of several mineralized veins which still require detailed studies and exploration by the technique of remote sensing. In this work we applied several processing techniques on ASTER imagery such as Colored Composition, Principal Component Analysis and Ratio Bands. The use of the reports of the specialized Bands makes it possible to identify some hydrothermal alteration minerals within the mining district of Oumjrane Boukerzia. These minerals are represented mainly by iron oxides and hydroxides (Hematite, jarosite, limonite and goethite), carbonate minerals (dolomite, calcite), clay minerals (Illite, kaolinite and chlorite) and quartz minerals. This work allows us to produce a map of hydrothermal alteration zones which can be used as a valuable reference in the strategy of mining exploration for the base metals (Cu, Pb, Zn and Ba), in the mining district of Oumjrane-Boukerzia and in the entire Eastern Anti-Atlas.