期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
超薄Hf_(0.5)Zr_(0.5)O_(2)铁电薄膜制备及在ETSOI器件应用研究 被引量:1
1
作者 李昱东 张兆浩 +3 位作者 闫江 唐波 张青竹 罗军 《稀有金属》 EI CAS CSCD 北大核心 2022年第4期480-487,共8页
基于超薄铁电薄膜材料的场效应晶体管(field effect transistor,FET)是集成电路在5 nm及以下技术节点实现低功耗和高性能的技术方案之一。然而,由于铁电薄膜存在“死层”(dead layer)效应,造成超薄铁电薄膜保持足够铁电性以应用于先进... 基于超薄铁电薄膜材料的场效应晶体管(field effect transistor,FET)是集成电路在5 nm及以下技术节点实现低功耗和高性能的技术方案之一。然而,由于铁电薄膜存在“死层”(dead layer)效应,造成超薄铁电薄膜保持足够铁电性以应用于先进技术节点器件上困难。针对超薄铁电薄膜面临的问题,本文首先探索了原子层沉积法(atomic layer deposition,ALD)制备Hf_(0.5)Zr_(0.5)O_(2)铁电薄膜的工艺,发现沉积Hf_(0.5)Zr_(0.5)O_(2)薄膜厚度与ALD生长周期呈现良好的线性关系,其生长速率约为0.136 nm·cycle^(-1)。接着对Hf_(0.5)Zr_(0.5)O_(2)薄膜的铁电性进行了表征,发现8 nm Hf_(0.5)Zr_(0.5)O_(2)薄膜比4 nm和10 nm薄膜具有更大的晶粒和更强的铁电性,并且通过横向对比发现4 nm的Hf_(0.5)Zr_(0.5)O_(2)薄膜依然具有较好的铁电性(2P_(r)=9.3μC·cm^(-2))。最后,将4 nm Hf_(0.5)Zr_(0.5)O_(2)薄膜材料集成到n型超薄绝缘体上硅(extra-thin silicon on insulator,ETSOI)器件中,实现室温下的亚阈值摆幅(sub-threshold slop,SS)达到57.4 mV·dec^(-1),突破了玻尔兹曼限制(60 mV·dec^(-1)),为超薄Hf_(0.5)Zr_(0.5)O_(2)铁电薄膜材料以及负电容ETSOI器件研究和应用提供重要的技术基础。 展开更多
关键词 Hf_(0.5)Zr_(0.5)O_(2) 原子层沉积 铁电 超薄绝缘体上硅(etsoi) 负电容 低功耗
原文传递
FDSOI的技术特点与发展现状
2
作者 张骥 苏炳熏 +1 位作者 许静 罗军 《微纳电子与智能制造》 2021年第1期41-56,共16页
全耗尽绝缘体上硅(fully depleted silicon on insulator,FDSOI)晶体管,是一种在28 nm节点以下,有效解决短沟道效应(short channel effect,SCE)的技术方案。在器件性能上,FDSOI具备背偏压调制、低漏电、抗辐照、高截止频率等特点;在制... 全耗尽绝缘体上硅(fully depleted silicon on insulator,FDSOI)晶体管,是一种在28 nm节点以下,有效解决短沟道效应(short channel effect,SCE)的技术方案。在器件性能上,FDSOI具备背偏压调制、低漏电、抗辐照、高截止频率等特点;在制造工艺上,FDSOI具有超薄顶层硅、埋氧层、翻转阱和抬升源漏等特殊模块;在应用终端上,FDSOI技术适合于当下新兴市场对于低功耗、射频通信以及低成本的需求。目前国外知名研发机构和企业,例如法国LETI、Soitec、STMicroelectronics、Global Foundries和IBM等,已经围绕以上课题开展了较多研究。对以上方面作了综述和分析,最后指出FDSOI技术是未来新兴应用市场的重要方向。 展开更多
关键词 全耗尽绝缘体上硅 etsoi UTBB UTB SOI SOTB
下载PDF
On substrate dopant engineering for ET-SOI MOSFETs with UT-BOX
3
作者 吴昊 许淼 +6 位作者 万光星 朱慧珑 赵利川 童小东 赵超 陈大鹏 叶甜春 《Journal of Semiconductors》 EI CAS CSCD 2014年第11期64-69,共6页
The importance ofsubstrate doping engineering for extremely thin SOI MOSFETs with ultra-thin buried oxide (ES-UB-MOSFETs) is demonstrated by simulation. A new substrate/backgate doping engineering, lateral non-unifo... The importance ofsubstrate doping engineering for extremely thin SOI MOSFETs with ultra-thin buried oxide (ES-UB-MOSFETs) is demonstrated by simulation. A new substrate/backgate doping engineering, lateral non-uniform dopant distributions (LNDD) is investigated in ES-UB-MOSFETs. The effects of LNDD on device performance, Vt-roll-off, channel mobility and random dopant fluctuation (RDF) are studied and optimized. Fixing the long channel threshold voltage (Vt) at 0.3 V, ES-UB-MOSFETs with lateral uniform doping in the substrate and forward back bias can scale only to 35 nm, meanwhile LNDD enables ES-UB-MOSFETs to scale to a 20 nm gate length, which is 43% smaller. The LNDD degradation is 10% of the carrier mobility both for nMOS and pMOS, but it is canceled out by a good short channel effect controlled by the LNDD. Fixing Vt at 0.3 V, in long channel devices, due to more channel doping concentration for the LNDD technique, the RDF in LNDD controlled ES-UB-MOSFETs is worse than in back-bias controlled ES-UB-MOSFETs, but in the short channel, the RDF for LNDD controlled ES-UB-MOSFET is better due to its self-adaption of substrate doping engineering by using a fixed thickness inner-spacer. A novel process flow to form LNDD is proposed and simulated. 展开更多
关键词 extremely thin SOl etsoi fully depleted SOI (FDSOI) short channel effect ultra thin BOX (UT- BOX)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部