期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
欧盟生成式人工智能立法实践及镜鉴
1
作者 陈亮 张翔 《法治研究》 CSSCI 北大核心 2024年第6期105-118,共14页
生成式人工智能利用海量未标记数据和合成数据进行持续训练,依赖深度神经网络等机器学习技术逐渐形成自主的行为能力,输出新颖结果、应用日趋广泛,正深刻改变着人际间的互动方式,其模型开发的资源密集型特性也促使复杂价值链条形成。生... 生成式人工智能利用海量未标记数据和合成数据进行持续训练,依赖深度神经网络等机器学习技术逐渐形成自主的行为能力,输出新颖结果、应用日趋广泛,正深刻改变着人际间的互动方式,其模型开发的资源密集型特性也促使复杂价值链条形成。生成式人工智能在运行节点的技术跃迁,引发了版权侵权、数据偏见、能耗过大、风险难测、虚假信息传播以及损害认定困难等监管挑战。欧盟人工智能法作出紧急回应,以“通用人工智能模型”为概念中枢,经由“通用人工智能系统”过渡,将生成式人工智能纳入“人工智能系统”范畴;输入端从数据数量和数据质量双管齐下设置合规义务,处理端引入“高影响能力”的自主性程度判断标准,并将“具有系统性风险的人工智能”嵌入风险分类分级制度,输出端则设计“检测、披露和透明度”等义务来规制虚假信息传播,部署端也专门设计价值链上的责任分配专条。虽然欧盟立法为应对生成式人工智能风险作出了努力,但在“抽象定义的确定性”“衡量数据训练效果的方法”“高级模型与小型模型之区分”“系统性损害的确定”以及“API接口和开源模式对价值分配的影响”等方面仍有继续完善的空间。 展开更多
关键词 欧盟人工智能法 生成式人工智能 定义范畴 系统性风险
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部