The Structural Eurocodes Systems, which are developed by the European Committee for Standardization (CEN), have come into trial use in the 28 countries of European Union (EU), and will lay a significant influence on t...The Structural Eurocodes Systems, which are developed by the European Committee for Standardization (CEN), have come into trial use in the 28 countries of European Union (EU), and will lay a significant influence on the development of the construction industry and on the international market of construction.展开更多
This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in t...This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.展开更多
A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based ...A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based on a comprehensive simulation approach which takes into account ground motion(GM)uncertainty,and the random effects in seismic demand,as well as in predicting the damage states(DSs).The methodology is implemented on three RCHR buildings of 20-story,30-story and 40-story with a core wall structural system.The loss functions described by a cumulative lognormal probability distribution are obtained for two intensity levels for a large set of simulations(NLTHAs)based on 60 GM records with a wide range of magnitude(M),distance to source(R)and different site soil conditions(SS).The losses expressed in percent of building replacement cost for RCHR buildings are obtained.In the estimation of losses,both structural(S)and nonstructural(NS)damage for four DSs are considered.The effect of different GM characteristics(M,R and SS)on the obtained losses are investigated.Finally,the estimated performance of the RCHR buildings are checked to ensure that they fulfill limit state requirements according to Eurocode 8.展开更多
The depth adjustment factor for bending strength stated in Eurocode 5(EC5)is only applicable to timbers having a characteristic density below 700 kg/m^(3).However,most Malaysian timbers are hardwood,some with a charac...The depth adjustment factor for bending strength stated in Eurocode 5(EC5)is only applicable to timbers having a characteristic density below 700 kg/m^(3).However,most Malaysian timbers are hardwood,some with a characteristic density reaching above 700 kg/m^(3).Therefore,the objective of this study was to examine whether the depth adjustment factor stipulated in EC5 is valid for Malaysian hardwood timbers.Six timber species were selected for this study,namely Kapur(Dryobalanops C.F.Gaertn.),Kempas(Koompassia Maingay ex Benth.),Keruing(Dipterocarpus C.F.Gaertn.),Light red meranti(Shorea Roxb.ex C.F.Gaertn.),Geronggang(Cratoxylum Blume)and Balau(Shorea Roxb.ex C.F.Gaertn.).The determination of bending strength and characteristic density was conducted according to BS EN 408:2010 and BS EN 384:2016,respectively.A graph for mean bending strength vs.(150/h)was plotted for each timber species.The power function was selected to analyze the relationship between the two variables.The power of the regression equations varied depending on the characteristic density of the timber species.For species with a characteristic density below 700 kg/m^(3),such as Kapur,Keruing,and Light red meranti,the power was between 0.16 to 0.17.In contrast,for species having a characteristic density above 700 kg/m^(3),namely Kempas and Balau,the power was higher at 0.23 and 0.24,respectively.Geronggang was an exception to this pattern.These values are close to the depth adjustment factor given in EC5,which is 0.2.Based on the results,it can be suggested that the adjustment factor of 0.2 is also applicable to Malaysian hardwood timbers with a characteristic density above 700 kg/m^(3).展开更多
The present work evaluated the deviations in the quality of steel reinforcing bars in terms of markings, diameter, yield strength and ductility in order to facilitate the drawing up of a yield strength value for the C...The present work evaluated the deviations in the quality of steel reinforcing bars in terms of markings, diameter, yield strength and ductility in order to facilitate the drawing up of a yield strength value for the Cameroon National Annex to Eurocode 2. The methodology of the work started with the collection of steel samples from various active building project sites in four different towns viz: Bamenda, Douala, Maroua and Yaoundé and testing their tensile strength and elongation using a Universal Testing Machine and also carrying out the bending test. Results show that bars without marked manufacturer’s name fell all the tests. Other results show that 52% of all the steel had yield stresses below 400 Mpa and the highest deviation in the yield strengths was 22.50%. The study recommends that properly marked grade 500 steel bars should be adopted in the Cameroon national annex to Eurocode 2.展开更多
In the Republic of Kazakhstan, the regulatory framework in construction based on Eurocodes has been in force since 2015. However, Kazakhstani produced steel has not been studied for compliance with the requirements of...In the Republic of Kazakhstan, the regulatory framework in construction based on Eurocodes has been in force since 2015. However, Kazakhstani produced steel has not been studied for compliance with the requirements of Eurocode 1993. This has resulted in limited use of Kazakhstani structural steel in construction. The feasibility of using structural steel in welded joints has been experimentally investigated. To verify the application of such joints in construction, including earthquake engineering, experimental studies of welded joints made of structural steel produced by Arcelor-Mittal in Temirtau have been carried out. In total, 7 types of structural steel of various thicknesses were selected. Five specimens have been used in each series of tests. The Brinell hardness values of the weld joint, yield strength of steel and tensile strength, relative rupture strain were determined. It was found that for all types of structural steel, the quality of weld joints complied with the requirements of Eurocode 1993—a sample rupture appeared along the plates (main body of the metal), not along the weld joints. It has been established that structural steel produced in the Republic of Kazakhstan fully complies with the requirements of Eurocode 1993. The studies on the dependence of Brinell hardness values of weld joint steel on the yield strength, tensile strength and relative rupture strain have been carried out. The correlation dependences between the values of yield strength of steel and tensile strength, relative rupture strain and BH Brinell hardness were studied. The results of work will allow for significantly increasing the use of Kazakhstani structural steel in seismic and conventional areas of the Republic of Kazakhstan.展开更多
Since 2015, the Republic of Kazakhstan has a new regulatory framework for construction on the basis of Eurocode. Many new steel quality requirements have been introduced for steel structures. As a result, Kazakhstan’...Since 2015, the Republic of Kazakhstan has a new regulatory framework for construction on the basis of Eurocode. Many new steel quality requirements have been introduced for steel structures. As a result, Kazakhstan’s steel production almost ceased to be used in construction. Therefore, a series of studies is being carried out to determine the quality of local steel for compliance with the requirements of Eurocode 1993. Impact toughness testing was carried out on 126 samples of 8, 10, 20 mm thick structural steel produced by the “Arcelor-Mittal” company. The experimental study of impact toughness of KCV and KCU at a temperature of +20˚, -20˚, -40˚ degrees were conducted for seven types of structural steel, the most common in the Republic of Kazakhstan, on the experimental experimentation facility of the KazRDICA JSC. The ST RK STB EN 10045-1-2012 techniques were used. In each series of tests, 3 specimens were used. It has been established that in all cases the temperature requirements of Eurocode 1993 (National Annex to SP RK EN1993-1-1: 2005/2011*, Table НП.2*) are met. A regression relationship between the values of impact toughness and temperature was constructed. It has been established that construction steel produced in the Republic of Kazakhstan fully complies with the requirements of 1993 Eurocode. The studies on the dependence of Brinell hardness of steel on the impact toughness of steel at specified temperatures are performed. The correlation dependencies between the values of impact toughness and BH Brinell hardness have been obtained.展开更多
This article presents, the study of a comparative evaluation of the chemical composition and physical properties, linear mass deviations, of four (04) types of steel used in the construction sector in Senegal. Type 1 ...This article presents, the study of a comparative evaluation of the chemical composition and physical properties, linear mass deviations, of four (04) types of steel used in the construction sector in Senegal. Type 1 (E1), Type 2 (E2) and Type 3 (E3) steels are produced by locally established companies and Type 4 (E4) witness bars are imported from the France. The chemical analyses of the different types of steel were carried out by combustion, infrared (IR) detection for carbon and sulfur, by reducing fusion for nitrogen and by optical emission spectrometer (SEO) for the rest of the elements. The composition was determined on bars with a diameter of 10 mm. Linear mass deviations were evaluated for steels with a diameter of 8 mm, 10 mm and 12 mm. The results of the chemical analyses showed that the limit value for the percentage of carbon was exceeded by 29.16% for the steel, type 3. For the other types (1, 2 and 4), the limit values set out in the French standard NF EN 10,080 are not exceeded. As regards the relative differences in mass, the results showed that for steels of local manufacture, all the samples of bars with diameters 10 and 12 mm and 33% of steels with diameters 8 mm do not comply with the standard. The results also indicate that the chemical composition and relative linear mass deviations of the steels, type 4 comply with the standard. Thus, locally manufactured steels are not always suitable for use in reinforced concrete constructions.展开更多
This study is focused on?nonlinear analysis and design of?spatial and perimeter moment resisting frames for a 9-storeys?office building?having?9.15?m span.?Seismic?design criteria of Eurocode 8?Ductility Class High (D...This study is focused on?nonlinear analysis and design of?spatial and perimeter moment resisting frames for a 9-storeys?office building?having?9.15?m span.?Seismic?design criteria of Eurocode 8?Ductility Class High (DCH)?with behavior factor (q) of 6.5 and AISC/ASCE code,?Special Moment resisting Frame (SMF) with response modification factor (R) of 8 were employed.?The design outcomes?are?expressed in terms of frame performance?(non-linear analysis), section profiles?(code recommendations), strength-demand to capacity ratios, drift-demand to capacity?ratios and structural weight. The consequences of the research compare?two codes in term of weights and design performances.?This will aid professional engineers and researchers to select effective design criteria and capacity design rules?efficiently.展开更多
文摘The Structural Eurocodes Systems, which are developed by the European Committee for Standardization (CEN), have come into trial use in the 28 countries of European Union (EU), and will lay a significant influence on the development of the construction industry and on the international market of construction.
文摘This article deals with the investigation of the effects of seismic impacts on the design and dimensioning of structures in South Kivu. The starting point is the observation of an ambivalence that can be observed in the province, namely the non-consideration of seismic action in the study of structures by both professionals and researchers. The main objective of the study is to show the importance of dynamic analysis of structures in South Kivu. It adopts a meta-analytical approach referring to previous researches on South Kivu and proposes an efficient and optimal method. To arrive at the results, we use Eurocode 7 and 8. In addition, we conducted static analysis using the Coulomb method and dynamic analysis using the Mononobe-Okabe method and compared the results. At Nyabibwe, the results showed that we have a deviation of 24.47% for slip stability, 12.038% for overturning stability and 9.677% for stability against punching through a weight wall.
文摘A probabilistic seismic loss assessment of RC high-rise(RCHR)buildings designed according to Eurocode 8 and located in the Southern Euro-Mediterranean zone is presented herein.The loss assessment methodology is based on a comprehensive simulation approach which takes into account ground motion(GM)uncertainty,and the random effects in seismic demand,as well as in predicting the damage states(DSs).The methodology is implemented on three RCHR buildings of 20-story,30-story and 40-story with a core wall structural system.The loss functions described by a cumulative lognormal probability distribution are obtained for two intensity levels for a large set of simulations(NLTHAs)based on 60 GM records with a wide range of magnitude(M),distance to source(R)and different site soil conditions(SS).The losses expressed in percent of building replacement cost for RCHR buildings are obtained.In the estimation of losses,both structural(S)and nonstructural(NS)damage for four DSs are considered.The effect of different GM characteristics(M,R and SS)on the obtained losses are investigated.Finally,the estimated performance of the RCHR buildings are checked to ensure that they fulfill limit state requirements according to Eurocode 8.
基金funded by Geran Penyelidikan Khas(GPK),(600-RMC/GPK 5/3(071/2020)).
文摘The depth adjustment factor for bending strength stated in Eurocode 5(EC5)is only applicable to timbers having a characteristic density below 700 kg/m^(3).However,most Malaysian timbers are hardwood,some with a characteristic density reaching above 700 kg/m^(3).Therefore,the objective of this study was to examine whether the depth adjustment factor stipulated in EC5 is valid for Malaysian hardwood timbers.Six timber species were selected for this study,namely Kapur(Dryobalanops C.F.Gaertn.),Kempas(Koompassia Maingay ex Benth.),Keruing(Dipterocarpus C.F.Gaertn.),Light red meranti(Shorea Roxb.ex C.F.Gaertn.),Geronggang(Cratoxylum Blume)and Balau(Shorea Roxb.ex C.F.Gaertn.).The determination of bending strength and characteristic density was conducted according to BS EN 408:2010 and BS EN 384:2016,respectively.A graph for mean bending strength vs.(150/h)was plotted for each timber species.The power function was selected to analyze the relationship between the two variables.The power of the regression equations varied depending on the characteristic density of the timber species.For species with a characteristic density below 700 kg/m^(3),such as Kapur,Keruing,and Light red meranti,the power was between 0.16 to 0.17.In contrast,for species having a characteristic density above 700 kg/m^(3),namely Kempas and Balau,the power was higher at 0.23 and 0.24,respectively.Geronggang was an exception to this pattern.These values are close to the depth adjustment factor given in EC5,which is 0.2.Based on the results,it can be suggested that the adjustment factor of 0.2 is also applicable to Malaysian hardwood timbers with a characteristic density above 700 kg/m^(3).
文摘The present work evaluated the deviations in the quality of steel reinforcing bars in terms of markings, diameter, yield strength and ductility in order to facilitate the drawing up of a yield strength value for the Cameroon National Annex to Eurocode 2. The methodology of the work started with the collection of steel samples from various active building project sites in four different towns viz: Bamenda, Douala, Maroua and Yaoundé and testing their tensile strength and elongation using a Universal Testing Machine and also carrying out the bending test. Results show that bars without marked manufacturer’s name fell all the tests. Other results show that 52% of all the steel had yield stresses below 400 Mpa and the highest deviation in the yield strengths was 22.50%. The study recommends that properly marked grade 500 steel bars should be adopted in the Cameroon national annex to Eurocode 2.
文摘In the Republic of Kazakhstan, the regulatory framework in construction based on Eurocodes has been in force since 2015. However, Kazakhstani produced steel has not been studied for compliance with the requirements of Eurocode 1993. This has resulted in limited use of Kazakhstani structural steel in construction. The feasibility of using structural steel in welded joints has been experimentally investigated. To verify the application of such joints in construction, including earthquake engineering, experimental studies of welded joints made of structural steel produced by Arcelor-Mittal in Temirtau have been carried out. In total, 7 types of structural steel of various thicknesses were selected. Five specimens have been used in each series of tests. The Brinell hardness values of the weld joint, yield strength of steel and tensile strength, relative rupture strain were determined. It was found that for all types of structural steel, the quality of weld joints complied with the requirements of Eurocode 1993—a sample rupture appeared along the plates (main body of the metal), not along the weld joints. It has been established that structural steel produced in the Republic of Kazakhstan fully complies with the requirements of Eurocode 1993. The studies on the dependence of Brinell hardness values of weld joint steel on the yield strength, tensile strength and relative rupture strain have been carried out. The correlation dependences between the values of yield strength of steel and tensile strength, relative rupture strain and BH Brinell hardness were studied. The results of work will allow for significantly increasing the use of Kazakhstani structural steel in seismic and conventional areas of the Republic of Kazakhstan.
文摘Since 2015, the Republic of Kazakhstan has a new regulatory framework for construction on the basis of Eurocode. Many new steel quality requirements have been introduced for steel structures. As a result, Kazakhstan’s steel production almost ceased to be used in construction. Therefore, a series of studies is being carried out to determine the quality of local steel for compliance with the requirements of Eurocode 1993. Impact toughness testing was carried out on 126 samples of 8, 10, 20 mm thick structural steel produced by the “Arcelor-Mittal” company. The experimental study of impact toughness of KCV and KCU at a temperature of +20˚, -20˚, -40˚ degrees were conducted for seven types of structural steel, the most common in the Republic of Kazakhstan, on the experimental experimentation facility of the KazRDICA JSC. The ST RK STB EN 10045-1-2012 techniques were used. In each series of tests, 3 specimens were used. It has been established that in all cases the temperature requirements of Eurocode 1993 (National Annex to SP RK EN1993-1-1: 2005/2011*, Table НП.2*) are met. A regression relationship between the values of impact toughness and temperature was constructed. It has been established that construction steel produced in the Republic of Kazakhstan fully complies with the requirements of 1993 Eurocode. The studies on the dependence of Brinell hardness of steel on the impact toughness of steel at specified temperatures are performed. The correlation dependencies between the values of impact toughness and BH Brinell hardness have been obtained.
文摘This article presents, the study of a comparative evaluation of the chemical composition and physical properties, linear mass deviations, of four (04) types of steel used in the construction sector in Senegal. Type 1 (E1), Type 2 (E2) and Type 3 (E3) steels are produced by locally established companies and Type 4 (E4) witness bars are imported from the France. The chemical analyses of the different types of steel were carried out by combustion, infrared (IR) detection for carbon and sulfur, by reducing fusion for nitrogen and by optical emission spectrometer (SEO) for the rest of the elements. The composition was determined on bars with a diameter of 10 mm. Linear mass deviations were evaluated for steels with a diameter of 8 mm, 10 mm and 12 mm. The results of the chemical analyses showed that the limit value for the percentage of carbon was exceeded by 29.16% for the steel, type 3. For the other types (1, 2 and 4), the limit values set out in the French standard NF EN 10,080 are not exceeded. As regards the relative differences in mass, the results showed that for steels of local manufacture, all the samples of bars with diameters 10 and 12 mm and 33% of steels with diameters 8 mm do not comply with the standard. The results also indicate that the chemical composition and relative linear mass deviations of the steels, type 4 comply with the standard. Thus, locally manufactured steels are not always suitable for use in reinforced concrete constructions.
文摘This study is focused on?nonlinear analysis and design of?spatial and perimeter moment resisting frames for a 9-storeys?office building?having?9.15?m span.?Seismic?design criteria of Eurocode 8?Ductility Class High (DCH)?with behavior factor (q) of 6.5 and AISC/ASCE code,?Special Moment resisting Frame (SMF) with response modification factor (R) of 8 were employed.?The design outcomes?are?expressed in terms of frame performance?(non-linear analysis), section profiles?(code recommendations), strength-demand to capacity ratios, drift-demand to capacity?ratios and structural weight. The consequences of the research compare?two codes in term of weights and design performances.?This will aid professional engineers and researchers to select effective design criteria and capacity design rules?efficiently.