A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO 2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 ...A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO 2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 nm for lithography. Spectral efficiency of the EUV emission around 13.5 nm from plate, cavity, and thin foil tin targets was studied. By translating the focusing lens along the laser axis, the dependence of EUV spectra on the amount of defocus was investigated. The results showed that the spectral efficiency was higher for the cavity target in comparison to the plate or foil target, while it decreased with an increase in the defocus distance. The source's spectra and the EUV emission intensity normalized to the incident pulse energy at 45 from the target normal were characterized for the in-band (2% of bandwidth) region as a function of laser energy spanning from 46 mJ to 600 mJ for the pure tin plate target. The energy normalized EUV emission was found to increase with the increasing incident pulse energy. It reached the optimum value for the laser energy of around 343 mJ, after which it dropped rapidly.展开更多
Coronal mass ejections(CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere in...Coronal mass ejections(CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope(MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future.展开更多
基金supported by the Scientific Research Foundation of the Education Department of Hubei Province (No.Q20131512)National Natural Science Foundation of China (No.61078024)
文摘A grazing incidence flat-field spectrograph using a concave grating was constructed to measure extreme ultraviolet (EUV) emission from a CO 2 laser-produced tin plasma throughout the wavelength region of 5 nm to 20 nm for lithography. Spectral efficiency of the EUV emission around 13.5 nm from plate, cavity, and thin foil tin targets was studied. By translating the focusing lens along the laser axis, the dependence of EUV spectra on the amount of defocus was investigated. The results showed that the spectral efficiency was higher for the cavity target in comparison to the plate or foil target, while it decreased with an increase in the defocus distance. The source's spectra and the EUV emission intensity normalized to the incident pulse energy at 45 from the target normal were characterized for the in-band (2% of bandwidth) region as a function of laser energy spanning from 46 mJ to 600 mJ for the pure tin plate target. The energy normalized EUV emission was found to increase with the increasing incident pulse energy. It reached the optimum value for the laser energy of around 343 mJ, after which it dropped rapidly.
基金supported by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China (Grant Nos. 11303016, 11373023, 11533005, 11203014)National Key Basic Research Special Foundation (Grant No. 2014CB744203)
文摘Coronal mass ejections(CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope(MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future.