期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Anti-abrasion collagen fiber-based membrane functionalized by UiO-66-NH_(2)with ultra-high efficiency and stability for oil-in-water emulsions separation
1
作者 Xiaoxia Ye Rixin Huang +3 位作者 Zhihong Zheng Juan Liu Jie Chen Yuancai Lv 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期285-297,共13页
Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present si... Membrane separation strategies offer promising platform for the emulsion separation.However,the low mechanical strength of membrane separation layers and the trade-off between separation flux and efficiency present significant challenges.In this study,we report a CFM@UiO-66-NH_(2)membrane with high separation flux,efficiency and stability,through utilizing a robust anti-abrasion collagen fiber membrane(CFM)as the multifunctional support and UiO-66-NH_(2)by an in-situ growth as the separation layer.The high mechanical strength of the CFM compensated for the weakness of the separation layer,while the charge-breaking effect of UiO-66-NH_(2),along with the size sieving of its constituent separating layers and the capillary effect of the collagen fibers,contributed to the potential for efficient separation.Additionally,the CFM@UiO-66-NH_(2)membrane exhibited superhydrophilic properties,making it suitable for separating oil-in-water microemulsions and nanoemulsions stabilized by anionic surfactants.The membrane demonstrated remarkable separation efficiencies of up to 99.960%and a separation flux of370.05 L·m^(-2)·h^(-1).Moreover,it exhibits stability,durability,and abrasion resistance,maintaining excellent separation performance even when exposed to strong acids and alkalis without any damage to its structure and performance.After six cycles of reuse,it achieved a separation flux of 417.97 L·m^(-2)·h^(-1)and a separation efficiency of 99.747%.Furthermore,after undergoing 500 cycles of strong abrasion,the separation flux remained at 124.39 L·m^(-2)·h^(-1),with a separation efficiency of 99.992%.These properties make it suitable for the long-term use in harsh operating environments.We attribute these properties to the electrostatic effect resulting from the amino group on UiO-66-NH_(2)and its in-situ growth on the CFM,which forms a size-screening separation layer.Our work highlights the potential of the CFM@UiO-66-NH_(2)membrane as an environmentally friendly size-screening material for the efficient emulsion wastewater separation. 展开更多
关键词 Collagen fibers Metal-organic frameworks oil-in-water emulsion separation Size sieving
下载PDF
Enhanced coalescence separation of oil-in-water emulsions using electrospun PVDF nanofibers 被引量:2
2
作者 Yujie Yang Lei Li +4 位作者 Qian Zhang Wenwen Chen Song Lin Zaiqian Wang Wangliang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期76-83,共8页
A novel and high-efficiency coalescence membrane enhanced by nano-sized polyvinylidene fluoride(PVDF)nanofibers based on polyester(PET)substrate was fabricated using electrospinning method.The properties of the electr... A novel and high-efficiency coalescence membrane enhanced by nano-sized polyvinylidene fluoride(PVDF)nanofibers based on polyester(PET)substrate was fabricated using electrospinning method.The properties of the electrospun nanofibers such as roughness and surface morphology greatly affected the oil droplet interception efficiency and surface wettability of the membrane.A series of coalescence units were prepared with different layers of nanofibrous membrane and the separation efficiencies at different initial concentrations,flow rates,and oil types were tested.It is very interesting that the obtained nanofibrous membrane exhibited superoleophilicity in air but poor oleophilicity under water,which was beneficial to the coalescence process.The coalescence unit with four membrane layers had excellent performances under different initial concentrations and flow rates.The separation efficiency of the 4-layers unit remained above 98.2%when the initial concentration reached up to 2000 mg·L-1.Furthermore,the unit also exhibited good performance with the increasing oil density and viscosity,which is promising for large-scale oil wastewater treatment. 展开更多
关键词 COALESCENCE ELECTROSPINNING Nanofibrous membrane oil-in-water emulsions
下载PDF
Effects of Different Heavy Crude Oil Fractions on the Stability of Oil-in-water Emulsions—the film properties of heavy crude functional components and water system 被引量:1
3
作者 ChenYaowu FanWeiyu SongYuanming NanGuozhi LiShuiping ChenShukun 《Petroleum Science》 SCIE CAS CSCD 2005年第1期93-96,共4页
A series of π-A isotherms are drawn to study the film properties of the components with Langmuir-Blodgett technique. The effects of the aromaticity of spread solvents and pH value on the air/water film formed by the... A series of π-A isotherms are drawn to study the film properties of the components with Langmuir-Blodgett technique. The effects of the aromaticity of spread solvents and pH value on the air/water film formed by the components are investigated. Acid fraction and asphaltene can form stable two-dimensional insoluble films on an air/water surface. The surface film pressure of acid fraction and asphaltene is higher and more stable than that of the other fractions. The surface film pressure of the fraction increases evidently under the basic condition (pH=12). The results show that the interfacial activity of acid fraction and asphaltene is superior to that of the other fractions and the basic condition is favorable to the stability of the O/W emulsion. 展开更多
关键词 viscous crude oil-in-water emulsion pressure-area isotherm
下载PDF
Measurement of water holdup in oil-in-water emulsions in wellbores using microwave resonance sensor 被引量:1
4
作者 Jin-Ningde Liu-Dongyang +1 位作者 Bai-Landi Ren-Yingyu 《Applied Geophysics》 SCIE CSCD 2021年第2期185-197,273,共14页
In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software... In this study,we propose a new method for water holdup measurement of oil-in-water emulsions with a microwave resonance sensor(MRS).The angle and length of the electrode plate are optimized by HFSS simulation software.Using a vector network analyzer(VNA),a static calibration experiment is conducted,and the resonant frequency distribution of oil-in-water emulsions is analyzed within an 80%–100%water holdup range.In addition,we observe and analyze the micron-sized oil bubble structure in the emulsifi ed state with an optical microscope.On this basis,a dynamic experiment of oil-in-water emulsions with high water cut and low velocity in a vertical upward pipe is conducted.S_(21) response curves of the MRS are obtained by the VNA under diff erent working conditions in real time.Finally,we analyze the relationship between the resonant frequency and water cut.Experimental results show that the MRS has an average resolution of 0.096%water cut for high water cut oil-in-water emulsions within the frequency range of 2.2–2.8 GHz. 展开更多
关键词 oil-in-water emulsions water holdup measurement high water cut microwave resonance sensor
下载PDF
Impact of sesame lignan on physical and oxidative stability of flaxseed oil-in-water emulsion 被引量:1
5
作者 Xintian Wang Kun Yu +6 位作者 Chen Cheng Xiao Yu David Julian McClements Wenwen Huang Jia Yang Fenghong Huang Qianchun Deng 《Oil Crop Science》 2019年第4期254-266,共13页
Recent studies have shown that the highly susceptibility to oxidation ofα-linolenic acid(ALA)enriched emulsion delivery system was harmful for human health which limited their incorporation into functional food.Impac... Recent studies have shown that the highly susceptibility to oxidation ofα-linolenic acid(ALA)enriched emulsion delivery system was harmful for human health which limited their incorporation into functional food.Impacts of natural sesamol(SOH)and sesamin(SES)on stability of flaxseed oil-in-water emulsion were investigated.Results showed that SOH indicated higher antioxidant activity and significantly prolonged the time of emulsion oil-off by retarding oil droplet aggregation in a dose dependent manner throughout storage.Moreover,SOH showed substantial extended lag phase of lipid oxidation products,especially for secondary oxidation products(thiobarbituric acid-reactive substances,TBARS),with a maximum reduction of 70%with 800 M dosage.The antioxidative efficiency of SOH might relate to its strong ability of scavenging free radical and chelate transition metal.Furthermore,SOH significantly enhanced interfacial barrier property and reduced permeation rate of peroxyl radical across emulsion interface by hydrogen bonds between sugar groups of saponin molecules and SOH.However,no obvious change in barrier property of emulsion was observed in SES.SOH improved physicochemical property of flaxseed oil-in-water emulsion with higher antioxidant activity and stronger interfacial barrier property,so that it could be serve as plant-based antioxidant in oil-in-water emulsion delivery system. 展开更多
关键词 lipid oxidation SESAMOL SESAMIN quillaja SAPONIN oil-in-water emulsions
下载PDF
Demulsification Behavior, Characteristics, and Performance of Surfactant Stabilized Oil-in-Water Emulsion under Bidirectional Pulsed Electric Field
6
作者 Ren Boping Kang Yong +3 位作者 Zhang Xianming Gong Haifeng Chen Ling Liu Yunqi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期10-22,共13页
As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsifica... As a novel electric demulsification method,bidirectional pulsed electric field(BPEF)was employed to demulsify the surfactant stabilized oil-in-water(SSO/W)emulsion for oil/water separation in this work.The demulsification behavior,characteristics,and stages under BPEF were explored.It was discovered that BPEF drove SSO/W emulsion to move and form vortexes,during which the oil droplets aggregated and accumulated to generate an oil droplet layer(ODL).ODL subsequently transformed into a continuous oil layer(COL)leading to the demulsification and separation of SSO/W emulsion.The conversion rate of ODL to COL was defined and used to evaluate the demulsification process and reflect the coalescence ability and transformation efficiency of dispersed oil droplets into COL.Furthermore,the effects of BPEF voltage,frequency,duty cycle,ratio of pulse output time,and surfactant type and content on the demulsification performance were examined.The optimal values of BPEF parameters for demulsification operation were 400 V,25 Hz,50%,and 4:1.O/W emulsion containing anionic surfactant was apt to be demulsified by BPEF,nonionic surfactant took the second place and cationic surfactant was the most difficult.A high surfactant content was not conducive to the BPEF demulsification.This work is anticipated to provide useful guidance for oil/water separation and oil recovery from actual emulsified oily wastewater by BPEF. 展开更多
关键词 oil-in-water emulsion SURFACTANT DemulsIFICATION bidirectional pulsed electric field
下载PDF
Development and applications of solids-free oil-in-water drilling fluids 被引量:5
7
作者 Yue Qiansheng Ma Baoguo 《Petroleum Science》 SCIE CAS CSCD 2008年第2期153-158,共6页
The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/... The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/W) emulsion drilling fluid is one type of low-density drilling fluid suitable for depleted fractured reservoirs. In this paper, the solids-free O/W drilling fluid was developed and has been successfully used in the Bozhong 28-1 oil and gas field, by which lost circulation, a severe problem occurred previously when drilling into fractured reservoir beds, was controlled, thereby minimizing formation damage. The O/W emulsion drilling fluid was prepared by adding 20% (by volume) No. 5 mineral oil (with high flash point, as dispersed phase) into seawater (as continuous phase). Surfactant HTO-1 (as a primary emulsifier) and non-ionic surfactant HTO-2 (as a secondary emulsifier) were added into the drilling fluid system to stabilize the emulsion; and YJD polymer was also added to seawater to improve the viscosity of the continuous phase (seawater). The drilling fluid was characterized by high flash point, good thermal stability and high stability to crude oil contamination. 展开更多
关键词 oil-in-water emulsion drilling fluids solids-free drilling fluids lost circulation depletedreservoir fractured reservoir
下载PDF
Experimental investigation of the effects of various parameters on viscosity reduction of heavy crude by oil-water emulsion 被引量:3
8
作者 Talal Al-Wahaibi Yahya Al-Wahaibi +2 位作者 Abdul-Aziz R.Al-Hashmi Farouq S.Mjalli Safiya Al-Hatmi 《Petroleum Science》 SCIE CAS CSCD 2015年第1期170-176,共7页
The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of ... The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction (VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of the crude oil was initially measured with respect to shear rates at different temperatures from 20 to 70℃. The crude oil exhibited a shear thinning behavior at all the temperatures. The strongest shear thinning was observed at 20℃. A non-ionic water soluble surfactant (Triton X-100) was used to form and stabilize crude oil emulsions. The emulsification process has significantly reduced the crude oil viscosity. The degree of VR was found to increase with an increase in water content and reach its maximum value at 50 % water content. The phase inversion from oil- oil emulsion occurred at 30 in-water emulsion to water-in- % water content. The results indicated that the VR was inversely proportional to temperature and concentration of silica nanoparticles. For water-in-oil emulsions, VR increased with shear rate and eventually reached a plateau at a shear rate of around 350 s^-1. This was attributed to the thinning behavior of the continuous phase. The VR of oil-in-water emulsions remained almost constant as the shear rate increased due to the Newtonian behavior of water, the continuous phase. 展开更多
关键词 Viscosity reduction Phase inversion Non-newtonian fluid oil-in-water emulsions Heavy crude oil
下载PDF
DEVELOPMENT AND APPLICATION OF WATER-IN-OIL EMULSIONS FOR ZINC HOT ROLLING
9
作者 Jiang Jianchun Mao Daheng(Department of Machine Engineering,Central South University of Technology, Changsha 410083) 《中国有色金属学会会刊:英文版》 CSCD 1995年第1期107-110,共4页
DEVELOPMENTANDAPPLICATIONOFWATER-IN-OIL EMULSIONSFORZINCHOTROLLINGJiang;JianchunMao;Daheng(DepartmentofMachi... DEVELOPMENTANDAPPLICATIONOFWATER-IN-OIL EMULSIONSFORZINCHOTROLLINGJiang;JianchunMao;Daheng(DepartmentofMachineEngineering,Cen... 展开更多
关键词 emulsion oil-in-water water-in-oil ZINC hot ROLLING LUBRICANT agueous LUBRICANT
下载PDF
Bionic functional membranes for separation of oil-in-water emulsions
10
作者 Chaolang CHEN Ruisong JIANG Zhiguang GUO 《Friction》 SCIE EI CAS CSCD 2024年第9期1909-1928,共20页
The separation of oil-in-water emulsion is an urgent challenge because its massive production and discharge from daily and industrial activities have caused severe hazards to the ecosystem and serious threats to human... The separation of oil-in-water emulsion is an urgent challenge because its massive production and discharge from daily and industrial activities have caused severe hazards to the ecosystem and serious threats to human health.Membrane technology is considered an outstanding solution strategy for the separation of oil-in-water emulsions due to its unique advantages of low cost,high efficiency,easy operation,and environmental friendliness.However,the membrane is easily fouled by the emulsion oil droplets during the separation process,causing a sharp decline in permeation flux,which greatly inhibits the long-term use of the membrane and largely shortens the membrane’s life.Recently,it was found that endowing the membranes with special wettability e.g.,superhydrophilic and superoleophobic can greatly enhance the permeability of the continuous water phase and inhibit the adhesion of oil droplets,thus promoting the separation performance and anti-oil-fouling property of membrane for oily emulsions.In this paper,we review and discuss the recent developments in membranes with special wettability for separating oil-in-water emulsions,including the mechanism analysis of emulsion separation membrane,membrane fouling issues,design strategies,and representative studies for enhancing the membrane’s anti-oil-fouling ability and emulsion separation performance. 展开更多
关键词 bionic surface membranes WETTABILITY oil-in-water emulsions oil-water separation
原文传递
几种毒死蜱EW防治水稻稻纵卷叶螟的田间药效试验 被引量:4
11
作者 余友成 秦龙 +2 位作者 柯汉云 陈丰收 何建红 《农药》 CAS 北大核心 2007年第5期351-352,共2页
分别用30%毒死蜱EW、30%增效毒死蜱EW、10%毒死蜱·氟啶脲EW以及40%毒死蜱EC防治水稻稻纵卷叶螟。结果表明,30%毒死蜱EW与40%毒死蜱EC药效相当,其中10%毒死蜱·氟啶脲EW最终防效突出,添加增效剂后的30%毒死蜱EW最终防效高于普通... 分别用30%毒死蜱EW、30%增效毒死蜱EW、10%毒死蜱·氟啶脲EW以及40%毒死蜱EC防治水稻稻纵卷叶螟。结果表明,30%毒死蜱EW与40%毒死蜱EC药效相当,其中10%毒死蜱·氟啶脲EW最终防效突出,添加增效剂后的30%毒死蜱EW最终防效高于普通30%毒死蜱EW,但速效性有所下降。 展开更多
关键词 毒死蜱 稻纵卷叶螟 水乳剂 防治效果
下载PDF
Emulsification of Indian heavy crude oil using a novel surfactant for pipeline transportation 被引量:5
12
作者 Shailesh Kumar Vikas Mahto 《Petroleum Science》 SCIE CAS CSCD 2017年第2期372-382,共11页
The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this... The most economical way to overcome flow assurance problems associated with transportation of heavy crude oil through offshore pipelines is by emulsifying it with water in the presence of a suitable surfactant.In this research,a novel surfactant,tri-triethanolamine monosunflower ester,was synthesized in the laboratory by extracting fatty acids present in sunflower(Helianthus annuus)oil.Synthesized surfactant was used to prepare oil-in-water emulsions of a heavy crude oil from the western oil field of India.After emulsification,a dramatic decrease in pour point as well as viscosity was observed.All the prepared emulsions were found to be flowing even at 1°C.The emulsion developed with 60%oil content and 2wt%surfactant showed a decrease in viscosity of 96%.The stability of the emulsion was investigated at different temperatures,and it was found to be highly stable.The effectiveness of surfactant in emulsifying the heavy oil in water was investigated by measuring the equilibrium interfacial tension(IFT)between the crude oil(diluted)and the aqueous phase along with zeta potential of emulsions.2wt%surfactant decreased IFT by almost nine times that of no surfactant.These results suggested that the synthesized surfactant may be used to prepare a stable oil-in-water emulsion for its transportation through offshore pipelines efficiently. 展开更多
关键词 Heavy crude oil oil-in-water emulsion Pipeline transportation Sunflower oil RHEOLOGY STABILITY
下载PDF
Lubricating properties of oil-in-water emulsion with low oil concentration:Competitive wetting effect 被引量:5
13
作者 LIU ShuHai TAN GuiBin 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第2期369-375,共7页
Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniem... Oil-in-water (O/W) emulsions are widely used in metal working such as hot rolling and cutting. Three kinds of O/W emulsions with low oil concentration were prepared which include conventional emulsion (CE), miniemulsion (MNE) and microemulsion (ME). The lubricating properties of O/W emulsions with low oil concentration were investigated using the tribological testers and the thin film interferometry based on the relative optical interference intensity method. The tribological test results under boundary lubrication show that the friction coefficient and the total losing weight can be clearly seen: CE 〈 MNE 〈 ME. The lubricating film thicknesses under elastohydrodynarnic lubrication and thin film lubrication show that a relationship of the film formation abilities: CE 〉 MNE 〉 ME. Competitive wetting behavior of water and oil on solid surface was confirmed to play an important role in the film formation and tribological behaviors of O/W emulsion. 展开更多
关键词 oil-in-water (O/W) emulsion water-based lubrication tribological properties lubricating film thickness competitivewetting
原文传递
An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation 被引量:4
14
作者 Shanshan Zhao Zhu Tao +5 位作者 Liwei Chen Muqiao Han Bin Zhao Xuelin Tian Liang Wang Fangang Meng 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2021年第4期193-203,共11页
Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation.However,conventional membranes usually suffer from severe pore clogging and surface fouling,and thus,nove... Low-pressure membrane filtrations are considered as effective technologies for sustainable oil/water separation.However,conventional membranes usually suffer from severe pore clogging and surface fouling,and thus,novel membranes with superior wettability and antifouling features are urgently required.Herein,we report a facile green approach for the development of an underwater superoleophobic microfiltration membrane via one-step oxidant-induced ultrafast co-deposition of naturally available catechol/chitosan on a porous polyvinylidene fluoride(PVDF)substrate.Membrane morphology and surface chemistry were studied using a series of characterization techniques.The as-prepared membrane retained the original pore structure due to the ultrathin and uniform catechol/chitosan coating.It exhibited ultrahigh pure water permeability and robust chemical stability under harsh pH conditions.Moreover,the catechol/chitosan hydrophilic coating on the membrane surface acting as an energetic barrier for oil droplets could minimize oil adhesion on the surface,which endowed the membrane with remarkable antifouling property and reusability in a cyclic oil-in-water(O/W)emulsion separation.The modified membrane exhibited a competitive flux of~428 L/(m^(2)·h·bar)after three filtration cycles,which was 70%higher than that of the pristine PVDF membrane.These results suggest that the novel underwatersuperoleophobic membrane can potentially be used for sustainable O/W emulsions separation,and the proposed green facile modification approach can also be applied to other water-remediation materials considering its low cost and simplicity. 展开更多
关键词 ANTIFOULING Catechol/chitosan co-deposition oil-in-water emulsions separation Underwater superoleophobic
原文传递
Efficient demulsification of ultralow-concentration crude oil-in-water emulsion by three-dimensional superhydrophilic channels 被引量:2
15
作者 Jian Jin Jun Su +4 位作者 Chengjie Xiang Bo Xu Kaiqi Zhao Hongyun Li Lidong Sun 《Science China Materials》 SCIE EI CAS CSCD 2022年第1期213-219,共7页
Efficient extraction of crude oil,the major energy resource of current concern and high demand worldwide,is of paramount importance in both energy and environmental fields.However,it remains a great challenge to separ... Efficient extraction of crude oil,the major energy resource of current concern and high demand worldwide,is of paramount importance in both energy and environmental fields.However,it remains a great challenge to separate the crude oil-in-water emulsions with an ultralow oil content of<200 ppm.Here,the three-dimensional and superwetting channels are developed by coating titanium foams with anodic TiO_(2) nanotube arrays.The channels render superhydrophilic and underwater superoleophobic feature,which enables rapid formation of water channels that expel the oil droplets.A high separation efficiency of ∼96.8% and low total organic carbon content of ∼6 ppm are thus achieved for the ultralow-concentration crude oil-in-water emulsions.The pressure and time dependence of the separation process is systematically studied with a critical pressure of 12.25 kPa.Such a high performance is close to the theoretical limit imposed by the ultralow concentration,and shows obvious advances over either organic membranes or inorganic frameworks. 展开更多
关键词 oil/water separation oil-in-water emulsion crude oil superhydrophilic channels TiO2 nanotubes
原文传递
MILP synthesis of separation processes for waste oil-in-water emulsions treatment
16
作者 Zorka N. Pintaric Gorazd P. Skof Zdravko Kravanja 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2016年第1期120-130,共11页
This paper presents a novel synthesis method for designing integrated processes for oil-in-water (O/W) emulsions treatment. General superstructure involving alternative separation technologies is developed and model... This paper presents a novel synthesis method for designing integrated processes for oil-in-water (O/W) emulsions treatment. General superstructure involving alternative separation technologies is developed and modelled as a mixed integer linear programming (MILP) model for maximum annual profit. Separation processes in the superstructure are divided into three main sections of which the pretreatment and final treatment are limited to the selection of one altemative (or bypass) only, while within the intermediate section various combinations of different technologies in series can be selected. Integrated processes composed of selected separation techniques for given ranges of input chemical oxygen demand (COD) can be proposed by applying parametric analyses within the superstructure approach. This approach has been applied to an existing industrial case study for deriving optimal combinations of technologies for treating diverse oil-in- water emulsions within the range of input COD values between 1000 mg-L-1 and 145000 mgL t. The optimal solution represents a flexible and profitable process for reducing the COD values below maximal allowable limits for discharging effluent into surface water. 展开更多
关键词 oil-in-water emulsion chemical oxygen demand SUPERSTRUCTURE process synthesis MILP
原文传递
Selective separation of oil-in-water emulsion with high efficiency by bio-inspired Janus membrane
17
作者 CAI YaHui CHEN DongYun +4 位作者 LI NaJun XU QingFeng LI Hua HE JingHui LU JianMei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第10期2211-2219,共9页
The efficient and rapid separation of oil from stabilized oil-in-water emulsions with micro/nanometer size is a global challenge.Owing to the low oil content in oil-in-water emulsions,separating the oil by simply cont... The efficient and rapid separation of oil from stabilized oil-in-water emulsions with micro/nanometer size is a global challenge.Owing to the low oil content in oil-in-water emulsions,separating the oil by simply controlling the surface wettability is difficult.Controlling the pore size of the membrane surface to achieve separation will lead to a sharp decrease in flux.Herein,inspired by cell membrane transportation,a hydrophilic/hydrophobic bifunctional Janus membrane for stable oil-in-water separation was prepared by simple surface polymerization and vapor diffusion.The prepared Janus membrane contained a hydrophobic side and hydrophilic polyamine layer.When used for oil-in-water emulsion separation,the polyamine layer accumulated micro/nanometer oil droplets,forming an oil layer on the hydrophobic surface.Water was retained by the 1H,1H,2H,2H-perfluorooctyl trichlorosilane layer,allowing oil droplets to selectively permeate through the membrane,achieving the separation effect.As the pore size of the modified fabric was basically unchanged,the permeation flux was fast(1.53×10^(3) Lm^(−2) h^(−1)).Furthermore,the poly(N,N-dimethylaminoethyl methacrylate)layer destroyed the emulsion stability,making the emulsion droplets aggregate without affecting the separation efficiency with fast permeation flux.Therefore,the prepared bifunctional Janus membrane shows great potential for actual wastewater treatment. 展开更多
关键词 bifunctional Janus membrane demulsification function oil-in-water emulsion separation superhydrophobicity/superoleophilicity surface chemistry
原文传递
Coconut Press Cake Alkaline Extract—Protein Solubility and Emulsification Properties
18
作者 Borges Chambal Bjorn Bergenstahl Petr Dejmek 《Food and Nutrition Sciences》 2013年第9期29-37,共9页
The solubility and the emulsification properties of a crude freeze dried alkaline protein extract (APE), 30% protein, obtained from coconut milk press cake by one step extraction at pH 11, were characterized at pH 2 t... The solubility and the emulsification properties of a crude freeze dried alkaline protein extract (APE), 30% protein, obtained from coconut milk press cake by one step extraction at pH 11, were characterized at pH 2 to 11, and the cream and subnatant fractions of the emulsion studied by SDS-PAGE electrophoresis. The protein solubility followed U profile, showing a minimum at pH 3 to 4, close to but not identical to reported iso-electric points of 4 - 5 for many coconut protein fractions. The extract showed good capacity to form oil-in-water emulsion outside the low solubility pH range. The bands that appeared to play a role in the emulsification were found at 32 and 42 kDa in SDS-PAGE electrophoresis, but the most predominant absorbed band was at 23 kDa. 展开更多
关键词 Coconut Proteins Coconut Milk Press Cake Alkaline Extraction oil-in-water emulsions SOLUBILITY SDS-PAGE Electrophoresis
下载PDF
有机膨润土对农药水乳剂稳定性的协同作用及其机制 被引量:5
19
作者 孔令娥 张嘉坤 +3 位作者 江华 曹立冬 李凤敏 黄啟良 《农药学学报》 CAS CSCD 北大核心 2012年第1期83-88,共6页
以螺环菌胺水乳剂为例,在水乳体系中添加不同质量分数的有机膨润土,从水乳剂微观形态、药液表面张力、流变学特性及有机膨润土对螺环菌胺的吸附作用几方面,初步探讨了有机膨润土对水乳剂稳定性的协同作用及其机制。结果表明:有机膨润土... 以螺环菌胺水乳剂为例,在水乳体系中添加不同质量分数的有机膨润土,从水乳剂微观形态、药液表面张力、流变学特性及有机膨润土对螺环菌胺的吸附作用几方面,初步探讨了有机膨润土对水乳剂稳定性的协同作用及其机制。结果表明:有机膨润土的加入降低了水乳剂粒子的粒径,同时使粒径分布变窄,在微观上改善了水乳剂的稳定性;降低了药液的表面张力,起到了固体乳化剂的作用;在增大体系黏度的同时使其变成了可剪切变稀流体,增强了水乳剂体系的流变学特性,使其具有触变性;有机膨润土对螺环菌胺具有一定的吸附作用。上述因素共同作用的结果使得有机膨润土对农药水乳剂体系的稳定性产生了协同作用。 展开更多
关键词 螺环菌胺 水乳剂 有机膨润土 协同作用 乳液稳定性
下载PDF
拟三元相图在25%氟菌·唑醚水乳剂配方筛选中的应用 被引量:1
20
作者 张鹏 黄啟良 +2 位作者 王文桥 曹立冬 李凤敏 《中国农业科学》 CAS CSCD 北大核心 2013年第22期4707-4715,共9页
【目的】探索拟三元相图在农药水乳剂配方筛选中的应用。【方法】在确定氟吡菌胺与吡唑醚菌酯混配比例的基础上,绘制含不同乳化剂的空白和含药拟三元相图,制备相应水乳剂样品并测定其相关质量指标,探索乳化剂种类和原药对相图中乳液区... 【目的】探索拟三元相图在农药水乳剂配方筛选中的应用。【方法】在确定氟吡菌胺与吡唑醚菌酯混配比例的基础上,绘制含不同乳化剂的空白和含药拟三元相图,制备相应水乳剂样品并测定其相关质量指标,探索乳化剂种类和原药对相图中乳液区面积大小的影响以及相图中乳液区面积的大小对水乳剂样品稳定性的影响;通过观察相图绘制过程中相态转变和在相图中不同位置取点,加工水乳剂样品,测定其相关质量指标,明确加工水乳剂时乳化剂相的用量范围。【结果】虽不能单一地依靠相图中乳液区面积的大小筛选水乳剂的乳化剂,但形成乳液区面积大的乳化剂相对更适合加工水乳剂;SAA相用量与实际配方中油相含量有关,通常SAA相与油相的比值在0.11—0.25的范围内容易加工出稳定的水乳剂;合适的乳化剂与助乳化剂的比例有利于提高乳化效果;有机膨润土和黄原胶配合使用可增强该水乳剂的物理稳定性。【结论】利用拟三元相图法能够方便快捷地确定水乳剂的乳化剂种类与用量范围,对水乳剂配方筛选具有指导作用。 展开更多
关键词 水乳剂 配方筛选 拟三元相图 氟吡菌胺 吡唑醚菌酯
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部