The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molec...The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.展开更多
Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon∑*(1/2-)is important for determining the nature of the...Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon∑*(1/2-)is important for determining the nature of the low-lying excited baryons.We review the experimental and theoretical progress on the studies of the∑*(1/2-).展开更多
In the present work,we extend the Coulomb and Proximity Potential Model(CPPM)to study two-proton(2p)radioactivity from excited states while the proximity potential is chosen as AW95 proposed by Aage Withner in 1995.De...In the present work,we extend the Coulomb and Proximity Potential Model(CPPM)to study two-proton(2p)radioactivity from excited states while the proximity potential is chosen as AW95 proposed by Aage Withner in 1995.Demonstration reveals that the theoretical results acquired by CPPM exhibit a high level of consistency with prior theoretical models such as the unified fission model(UFM),generalized liquid-drop model(GLDM)and effective liquid-drop model(ELDM).Furthermore,within the CPPM,we predicted the half-lives of potential 2p radioactive nuclei for which experimental data are currently unavailable.The predicted results were then assessed,compared with UFM,ELDM and GLDM models,and examined in detail.展开更多
Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the...Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the deep subwavelength scale. Here we present an L-shaped electron-beam-excited nanoantenna(LENA) with two identical orthogonal arms. By selecting different electron-beam impacting sites on the LENA, either the lefthanded circularly polarized(LCP) or the right-handed circularly polarized(RCP) emission can be excited. The LCP and RCP emissions possess different emission directionality, and the emission wavelength depends on the arm length of the LENA. Further, we show a combined nanoantenna with two LENAs of different arm lengths.Induced by the electron beam, LCP and RCP lights emit simultaneously from the nanoantenna with different wavelengths to different directions. This approach is suggested to be informative for investigating electron-photon interaction and electron-beam spectroscopy in nanophotonics.展开更多
We theoretically investigate high-order harmonic generation(HHG) of helium(He), lithium cation(Li+), and beryllium dication(Be2+) using the time-dependent Hartree–Fock method to solve the three-dimensional time-depen...We theoretically investigate high-order harmonic generation(HHG) of helium(He), lithium cation(Li+), and beryllium dication(Be2+) using the time-dependent Hartree–Fock method to solve the three-dimensional time-dependent Schr ¨odinger equation. It is found that the intensity of the HHG increases significantly from a certain harmonic order below the ionization threshold, and the initial position of the enhancement does not depend on the intensity or the wavelength of the driving laser field. Further analysis shows that excited states play an important role on this enhancement,consistent with the excited-state tunneling mechanism [Phys. Rev. Lett. 116 123901(2016)]. Our results unambiguously show that excited-state tunneling is essential for understanding the enhancement of HHG. Accordingly, a four-step model is herein proposed to illustrate the multiphoton excitation effect in helium-like ions, which enriches the physics of HHG enhancement.展开更多
The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the m...The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the maximumδandδat 100.0 keV≥E_(po)≥1.0 keV of a NEASLD with the deduced formulae are presented(B is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter,δis the secondary electron yield,E_(po)is the incident energy of primary electrons and E_(pom)is the E_(po)corresponding to the maximumδ).The parameters obtained here are analyzed,and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors.The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated,and it is concluded that the presented method of obtaining A is more accurate than that of obtaining the corresponding parameter for a NEAS with largeλ_(ph)(λ_(ph)being the mean escape depth of photoelectrons),and that the presented method of calculating B at E_(po)>10.0 keV is more widely applicable for obtaining the corresponding parameters for a NEAS with largeλ_(ph).展开更多
Investigating the impact of microhydration on the excited-states and electronic excitation properties of biomolecules has remained one of the important yet challenging aspects of science because of the complexity of d...Investigating the impact of microhydration on the excited-states and electronic excitation properties of biomolecules has remained one of the important yet challenging aspects of science because of the complexity of developing models. However, with the advent of computational chemistry methods such as TD-DFT, many useful insights about the electronic excitation energy and excited-state nature of biomolecules can be explored. Accordingly, in our study, we have incorporated the TD-DFT/wB97XD/cc-pVTZ method to study the excited state properties of N-acetyl phenylalanine amide (NAPA-A(H<sub>2</sub>O) <sub>n</sub>) (n = 1 to 4) clusters from ground to the tenth lowest gaseous singlet excited state. We found that the C=O bond length gradually increases both in N-terminal amide and C-terminal amide after the sequential addition of water molecules because of intermolecular H-bonding and this intermolecular H-bonding becomes weaker after the sequential addition of H<sub>2</sub>O molecules. The UV absorption maxima of NAPA-A (H<sub>2</sub>O)<sub>n</sub> (n = 1 - 4) clusters consisted of two peaks that are S<sub>5</sub>←S<sub>0</sub> (1<sup>st</sup> absorption) and S<sub>6</sub>←S<sub>0</sub> (2<sup>nd</sup> absorption) excitations. The first absorption maxima were blue-shifted with the increase in oscillator strength. This means that strong H-bonds reduce the charge transfer and make clusters more rigid. On the other hand, the second absorption maxima were red-shifted with the decrease in oscillator strength. In the ECD spectra, the negative bands indicate the presence of an amide bond and L-configuration of micro hydrated NAPA-A clusters. Finally, our calculated absorption and fluorescence energy confirm that all the NAPA-A (H<sub>2</sub>O) <sub>n</sub> (n = 0 - 4) clusters revert to the ground state from the fluorescent state by emitting around 5.490 eV of light.展开更多
We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,e...We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,elemental composition,ionization potential,and spin multiplicities of excited and ground states.This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds.To adjust the model,both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized.For some representative compounds of general concern that have not yet attracted sufficient research interest,the results of our multireference second-order perturbation theory calculations are additionally engaged.We show that the model we developed has reasonable(given the considerable uncertainties in the reference data)accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy.These findings can be useful for many applications,where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states,in particular,when building the complex nonequilibrium kinetic models to describe the observed optical refractivity(dielectric permittivity)of nonthermal reacting gas flows.展开更多
Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl...Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl) -[ 1, 3, 4 ] oxadiazol-2-yl ] -phenyl }-vinyl ) -carbazole ( 2 ) are synthesized through Wittig reaction and characterized by nuclear magnetic resonance(NMR)and infrared(IR). The two- photon absorption properties of chromophores are investigated. These chromophores exhibit large two-photon absorption crosssections and strong blue two-photon excited fluorescence. The cooperative enhancement of two-photon absorption(TPA) in the multi-branched structures is observed. This enhancement is partly attributed to the electronic coupling between the branches. The electronic push-pull structures in the arm and their cooperative effects help the extended charge transfer for TPA.展开更多
The electronic structure of methanol/TiO2(ll0) interface has been studied by photoemis- sion spectroscopy. The pronounced resonance which appears at 5.5 eV above the Fermi level in two-photon photoemission spectrosc...The electronic structure of methanol/TiO2(ll0) interface has been studied by photoemis- sion spectroscopy. The pronounced resonance which appears at 5.5 eV above the Fermi level in two-photon photoemission spectroscopy (2PPE) is associated with the photocatalyzed dissociation of methanol at fivefold coordinated Ti sites (Ti5c) on TiO2 (110) surface [Chem- ical Science 1, 575 (2010)]. To check whether this resonance signal arises from initial or intermediate states, photon energy dependent 2PPE and comparison between one-photon photoemission spectroscopy and 2PPE have been performed. Both results consistently sug- gest the resonance signal originates from the initially unoccupied intermediate states, i.e., excited states. Dispersion measurements suggest the excited state is localized. Time-resolved studies show the lifetime of the excited state is 24 fs. This work presents comprehensive char- acterization of the excited states on methanol/TiO2(110) interface, and provides elaborate experimental data for the development of theoretical methods in reproducing the excited states on TiO2 surfaces and interfaces.展开更多
A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low e...A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.展开更多
Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute ...Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute to the serious vibration of rotating machines.It is necessary that one apparatus can depress vibration caused by two or more reasons.The fault self-recovery(FSR) mechanism is introduced and investigated.Strategies of vibration control are investigated theoretically using numerical method firstly.Active magneticelectric exciter(AME) are selected as the actuator of a FSR device because it can provide suitable force by varying the control current in the exciters depending upon a proportional and derivative control law.By numerical study,it is indicate that only a small control force is needed to improve stability margins of the compressor and prevent subsynchronous vibration fault efficiently.About synchronous vibration,three control strategies,searching in whole circle,fast optimizing control(FOC),and none mistaking control,are investigated to show which of the control strategy can realize the fault self-recovery in the shortest time.Experimental study is conducted on a test rig with variable rotating speed.Results of the test indicate that the non-mistake control strategy can minimize synchronous vibration in less than three seconds.The proposed research can provide a new insight for subsynchronous and synchronous vibration restraining about centrifugal compressor.展开更多
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2022A026)the National Key Research and Development Program of China(Grant No.2022YFA1602500)+2 种基金the National Natural Science Foundation of China(Grant No.11934004)Fundamental Research Funds in Heilongjiang Province Universities,China(Grant No.145109309)Foundation of National Key Laboratory of Computational Physics(Grant No.6142A05QN22006)。
文摘The SiS molecule,which plays a significant role in space,has attracted a great deal of attention for many years.Due to complex interactions among its low-lying electronic states,precise information regarding the molecular structure of SiS is limited.To obtain accurate information about the structure of its excited states,the high-precision multireference configuration interaction(MRCI)method has been utilized.This method is used to calculate the potential energy curves(PECs)of the 18Λ–S states corresponding to the lowest dissociation limit of SiS.The core–valence correlation effect,Davidson’s correction and the scalar relativistic effect are also included to guarantee the precision of the MRCI calculation.Based on the calculated PECs,the spectroscopic constants of quasi-bound and bound electronic states are calculated and they are in accordance with previous experimental results.The transition dipole moments(TDMs)and dipole moments(DMs)are determined by the MRCI method.In addition,the abrupt variations of the DMs for the 1^(5)Σ^(+)and 2^(5)Σ^(+)states at the avoided crossing point are attributed to the variation of the electronic configuration.The opacity of SiS at a pressure of 100 atms is presented across a series of temperatures.With increasing temperature,the expanding population of excited states blurs the band boundaries.
基金partly supported by the National Key R&D Program of China(Grant No.2023YFA1606700)partly supported by the National Key R&D Program of China(Grant No.2024YFE0105200)+6 种基金supported by the Natural Science Foundation of Henan(Grant Nos.232300421140 and 222300420554)the National Natural Science Foundation of China(Grant Nos.12475086,12192263,12205075,12175239,12221005,12075288,and 12361141819)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(Grant No.NLK2021-08)the Central Government Guidance Funds for Local Scientific and Technological Development,China(Grant No.ZY22096024)the National Key Research and Development Program of China(Grant No.2020YFA0406400)the Chinese Academy of Sciences(Grant No.YSBR-101)the Youth Innovation Promotion Association of CAS。
文摘Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons.Investigating the low-lying excited baryon∑*(1/2-)is important for determining the nature of the low-lying excited baryons.We review the experimental and theoretical progress on the studies of the∑*(1/2-).
基金supported by the National Natural Science Foundation of China(Nos.12175100 and 11975132)the Construct Program of the Key Discipline in Hunan Province,the Research Foundation of Education Bureau of Hunan Province,China(No.18A237)+1 种基金the Natural Science Foundation of Hunan Province,China(No.2018JJ2321)the Innovation Group of Nuclear and Particle Physics in USC,the Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(No.2019KFZ10).
文摘In the present work,we extend the Coulomb and Proximity Potential Model(CPPM)to study two-proton(2p)radioactivity from excited states while the proximity potential is chosen as AW95 proposed by Aage Withner in 1995.Demonstration reveals that the theoretical results acquired by CPPM exhibit a high level of consistency with prior theoretical models such as the unified fission model(UFM),generalized liquid-drop model(GLDM)and effective liquid-drop model(ELDM).Furthermore,within the CPPM,we predicted the half-lives of potential 2p radioactive nuclei for which experimental data are currently unavailable.The predicted results were then assessed,compared with UFM,ELDM and GLDM models,and examined in detail.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0211300)the National Natural Science Foundation of China(Grant Nos.11974177,61975078,and 12234010)。
文摘Manipulating directional chiral optical emissions on a nanometer scale is significant for material science research. The electron-beam-excited nanoantenna provides a favorable platform to tune optical emissions at the deep subwavelength scale. Here we present an L-shaped electron-beam-excited nanoantenna(LENA) with two identical orthogonal arms. By selecting different electron-beam impacting sites on the LENA, either the lefthanded circularly polarized(LCP) or the right-handed circularly polarized(RCP) emission can be excited. The LCP and RCP emissions possess different emission directionality, and the emission wavelength depends on the arm length of the LENA. Further, we show a combined nanoantenna with two LENAs of different arm lengths.Induced by the electron beam, LCP and RCP lights emit simultaneously from the nanoantenna with different wavelengths to different directions. This approach is suggested to be informative for investigating electron-photon interaction and electron-beam spectroscopy in nanophotonics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12274294 and 12075036)。
文摘We theoretically investigate high-order harmonic generation(HHG) of helium(He), lithium cation(Li+), and beryllium dication(Be2+) using the time-dependent Hartree–Fock method to solve the three-dimensional time-dependent Schr ¨odinger equation. It is found that the intensity of the HHG increases significantly from a certain harmonic order below the ionization threshold, and the initial position of the enhancement does not depend on the intensity or the wavelength of the driving laser field. Further analysis shows that excited states play an important role on this enhancement,consistent with the excited-state tunneling mechanism [Phys. Rev. Lett. 116 123901(2016)]. Our results unambiguously show that excited-state tunneling is essential for understanding the enhancement of HHG. Accordingly, a four-step model is herein proposed to illustrate the multiphoton excitation effect in helium-like ions, which enriches the physics of HHG enhancement.
基金Project supported by the National Natural Science Foundation of China(Grant No.11873013)。
文摘The formulae for parameters of a negative electron affinity semiconductor(NEAS)with large mean escape depth of secondary electrons A(NEASLD)are deduced.The methods for obtaining parameters such asλ,B,E_(pom)and the maximumδandδat 100.0 keV≥E_(po)≥1.0 keV of a NEASLD with the deduced formulae are presented(B is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter,δis the secondary electron yield,E_(po)is the incident energy of primary electrons and E_(pom)is the E_(po)corresponding to the maximumδ).The parameters obtained here are analyzed,and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors.The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated,and it is concluded that the presented method of obtaining A is more accurate than that of obtaining the corresponding parameter for a NEAS with largeλ_(ph)(λ_(ph)being the mean escape depth of photoelectrons),and that the presented method of calculating B at E_(po)>10.0 keV is more widely applicable for obtaining the corresponding parameters for a NEAS with largeλ_(ph).
文摘Investigating the impact of microhydration on the excited-states and electronic excitation properties of biomolecules has remained one of the important yet challenging aspects of science because of the complexity of developing models. However, with the advent of computational chemistry methods such as TD-DFT, many useful insights about the electronic excitation energy and excited-state nature of biomolecules can be explored. Accordingly, in our study, we have incorporated the TD-DFT/wB97XD/cc-pVTZ method to study the excited state properties of N-acetyl phenylalanine amide (NAPA-A(H<sub>2</sub>O) <sub>n</sub>) (n = 1 to 4) clusters from ground to the tenth lowest gaseous singlet excited state. We found that the C=O bond length gradually increases both in N-terminal amide and C-terminal amide after the sequential addition of water molecules because of intermolecular H-bonding and this intermolecular H-bonding becomes weaker after the sequential addition of H<sub>2</sub>O molecules. The UV absorption maxima of NAPA-A (H<sub>2</sub>O)<sub>n</sub> (n = 1 - 4) clusters consisted of two peaks that are S<sub>5</sub>←S<sub>0</sub> (1<sup>st</sup> absorption) and S<sub>6</sub>←S<sub>0</sub> (2<sup>nd</sup> absorption) excitations. The first absorption maxima were blue-shifted with the increase in oscillator strength. This means that strong H-bonds reduce the charge transfer and make clusters more rigid. On the other hand, the second absorption maxima were red-shifted with the decrease in oscillator strength. In the ECD spectra, the negative bands indicate the presence of an amide bond and L-configuration of micro hydrated NAPA-A clusters. Finally, our calculated absorption and fluorescence energy confirm that all the NAPA-A (H<sub>2</sub>O) <sub>n</sub> (n = 0 - 4) clusters revert to the ground state from the fluorescent state by emitting around 5.490 eV of light.
基金supported by the grant of the Russian Science Foundation(project No.22-29-00124)。
文摘We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,elemental composition,ionization potential,and spin multiplicities of excited and ground states.This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds.To adjust the model,both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized.For some representative compounds of general concern that have not yet attracted sufficient research interest,the results of our multireference second-order perturbation theory calculations are additionally engaged.We show that the model we developed has reasonable(given the considerable uncertainties in the reference data)accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy.These findings can be useful for many applications,where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states,in particular,when building the complex nonequilibrium kinetic models to describe the observed optical refractivity(dielectric permittivity)of nonthermal reacting gas flows.
基金The National Natural Science Foundation of China(No.60678042)the Natural Science Foundation of Jiangsu Province(No.BK2006553)the Pre-Research Project of the National Natural Science Foundation supported by Southeast University(No.9207041399)
文摘Carbazole-core multi-branched chromophores 9-ethyl- 3, 6-bis ( 2- { 4- [ 5- (4-tert-butyl-phenyl) - [ 1, 3, 4 ] oxadiazol-2-yl ] - phenyl }-vinyl) -carbazole(3) and 9-ethyl-3-( 2- {4-[ 5-(4-tert-butyl- phenyl) -[ 1, 3, 4 ] oxadiazol-2-yl ] -phenyl }-vinyl ) -carbazole ( 2 ) are synthesized through Wittig reaction and characterized by nuclear magnetic resonance(NMR)and infrared(IR). The two- photon absorption properties of chromophores are investigated. These chromophores exhibit large two-photon absorption crosssections and strong blue two-photon excited fluorescence. The cooperative enhancement of two-photon absorption(TPA) in the multi-branched structures is observed. This enhancement is partly attributed to the electronic coupling between the branches. The electronic push-pull structures in the arm and their cooperative effects help the extended charge transfer for TPA.
文摘The electronic structure of methanol/TiO2(ll0) interface has been studied by photoemis- sion spectroscopy. The pronounced resonance which appears at 5.5 eV above the Fermi level in two-photon photoemission spectroscopy (2PPE) is associated with the photocatalyzed dissociation of methanol at fivefold coordinated Ti sites (Ti5c) on TiO2 (110) surface [Chem- ical Science 1, 575 (2010)]. To check whether this resonance signal arises from initial or intermediate states, photon energy dependent 2PPE and comparison between one-photon photoemission spectroscopy and 2PPE have been performed. Both results consistently sug- gest the resonance signal originates from the initially unoccupied intermediate states, i.e., excited states. Dispersion measurements suggest the excited state is localized. Time-resolved studies show the lifetime of the excited state is 24 fs. This work presents comprehensive char- acterization of the excited states on methanol/TiO2(110) interface, and provides elaborate experimental data for the development of theoretical methods in reproducing the excited states on TiO2 surfaces and interfaces.
文摘A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.
基金supported by the Key Program (Grant. No. 50635010)General Program (Grant. No. 50975018) of National Natural Science Foundation of China
文摘Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute to the serious vibration of rotating machines.It is necessary that one apparatus can depress vibration caused by two or more reasons.The fault self-recovery(FSR) mechanism is introduced and investigated.Strategies of vibration control are investigated theoretically using numerical method firstly.Active magneticelectric exciter(AME) are selected as the actuator of a FSR device because it can provide suitable force by varying the control current in the exciters depending upon a proportional and derivative control law.By numerical study,it is indicate that only a small control force is needed to improve stability margins of the compressor and prevent subsynchronous vibration fault efficiently.About synchronous vibration,three control strategies,searching in whole circle,fast optimizing control(FOC),and none mistaking control,are investigated to show which of the control strategy can realize the fault self-recovery in the shortest time.Experimental study is conducted on a test rig with variable rotating speed.Results of the test indicate that the non-mistake control strategy can minimize synchronous vibration in less than three seconds.The proposed research can provide a new insight for subsynchronous and synchronous vibration restraining about centrifugal compressor.