We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation...This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.展开更多
We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global min...We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.展开更多
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined...In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the glob...In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the global existence of the solution to this system without any small condition on the initial data.展开更多
托马斯.阿奎那的形而上学是以是(being)为中心、以本质(essence)和存在(existence)的关系学说为枢纽的存在论。阿奎那认为,形而上学或存在论所探讨的特殊的固有对象即是是(to on,esse,being)自身,或者称之为是之所以为是(esse in quantu...托马斯.阿奎那的形而上学是以是(being)为中心、以本质(essence)和存在(existence)的关系学说为枢纽的存在论。阿奎那认为,形而上学或存在论所探讨的特殊的固有对象即是是(to on,esse,being)自身,或者称之为是之所以为是(esse in quantum esse,being as beinginjeneral)。他在论证是自身时强调实在意义上的是重于逻辑意义的是。是(being)包括本质(essence)与存在(existence);本质(essence)与存在(existence)皆为是者(beings)。而存在(existence)先于本质(essence);存在(existence)是是(being)之最具体的、个别的、实体的、独一无二的完美实现(act)。托马斯.阿奎那的存在论哲学颠覆了传统哲学中存在与本质的位置,它以一种存在主义代替本质主义,从而在形而上学历史上掀起一场革命。展开更多
Aim The existence of generalized solution for a class of nonlinear partial differential equations with nonhanogeneous boundary condition was investigated. This problem arises from polymer processing concerned with the...Aim The existence of generalized solution for a class of nonlinear partial differential equations with nonhanogeneous boundary condition was investigated. This problem arises from polymer processing concerned with the first initial-boundary value problem or the nonstationary floW of non-Newtonian viscous incompressiblee fluid through the slit dice. MethodsThe monotone operator theory and the Schauder's fixal point theorem were used. Results and Conclusion The existence theorem of generalized solutions for a the of nonlinear partial differential equations with nonhormogeneous boundary condition is proved under reasonable conditions展开更多
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact con...Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact conditions are relaxed totally. First, the coerciveness of the functional is proved. Then the uniqueness of the solution of variational inequality for the elastoplastic contact problems is demonstrated. The existence of the solution is also demonstrated according to the sufficient conditions for the solution of the elliptic variational inequality. A mathematical foundation is developed for the variational extremum principle of elastoplastic contact problems. The developed variational extremum forms can give an effective and strict mathematical modeling to solve contact problems with mathematical programming.展开更多
China English is an objective existence as a performance variety used in China.It is based on standard English and possesses Chinese characteristics.The Chinese characteristics of China English are reflected in the ph...China English is an objective existence as a performance variety used in China.It is based on standard English and possesses Chinese characteristics.The Chinese characteristics of China English are reflected in the phonology,vocabulary,syntax,rhetoric and text,particularly in the vocabulary.This essay will discuss the features of China English from the following three aspects: the development of English in China;the comparison between China English,Pidgin English and Chinese English and the Chinese words borrowed by English.展开更多
Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we pro...Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.展开更多
In this paper we deal with the existence of infinitely many critical points of the even functional I(u)=integral from n=Q to (F(x,u,Du))+integral from n=(?)Q to (G(x,u)), u∈W^(1,p)(Ω),where G(x, u)=integral from n=o...In this paper we deal with the existence of infinitely many critical points of the even functional I(u)=integral from n=Q to (F(x,u,Du))+integral from n=(?)Q to (G(x,u)), u∈W^(1,p)(Ω),where G(x, u)=integral from n=o to u (g(x,t)dt), under the weak structure conditions on F(x, u, q) by the Mountain Pass Lemma.展开更多
In this paper, we are concerned with the existence and non-existence of global solutions of a semi-linear heat equation with fractional Laplacian. We obtain some extem sion of results of Weissler who considered the ca...In this paper, we are concerned with the existence and non-existence of global solutions of a semi-linear heat equation with fractional Laplacian. We obtain some extem sion of results of Weissler who considered the case α = 1, and h ≡ 1.展开更多
We consider the global existence and decay of integral solutions to the parabolic-parabolic Keller-Segel system in d-dimension.On the one hand,by Banach fixed point theorem and some properties of heat kernel,we prove ...We consider the global existence and decay of integral solutions to the parabolic-parabolic Keller-Segel system in d-dimension.On the one hand,by Banach fixed point theorem and some properties of heat kernel,we prove the local existence and the global existence of integral solutions for the different initial data under some conditions that involve the size of the initial data.On the other hand,in the case of global solutions,we obtain their optimal time decay by Gronwall’s lemma.展开更多
We prove the existence of a ground state solution for the qusilinear elliptic equation in , under suitable conditions on a locally Holder continuous non-linearity , the non-linearity may exhibit a singularity as . We ...We prove the existence of a ground state solution for the qusilinear elliptic equation in , under suitable conditions on a locally Holder continuous non-linearity , the non-linearity may exhibit a singularity as . We also prove the non-existence of radially symmetric solutions to the singular elliptic equation in , as where .展开更多
This paper deals with positive solutions of a degenerate parabolic system: u t= Δ u m+ v p ln α(h+u), v t= Δ v n+u q ln β(h+v) with homogeneous Dirichlet boundary conditions and positive in...This paper deals with positive solutions of a degenerate parabolic system: u t= Δ u m+ v p ln α(h+u), v t= Δ v n+u q ln β(h+v) with homogeneous Dirichlet boundary conditions and positive initial conditions. This system describes the processes of diffusion of heat and burning in two component continuous media with nonlinear conductivity and volume energy release. We obtain the global existence and blow up results of the solution relying on comparison with carefully constructed upper solutions and lower solutions.展开更多
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
文摘This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.
文摘We study the existence of solutions for Kirchhoff-type equations.Firstly,we use the Sobolev inequality and the weakly lower semi-continuity of the norm to prove that the corresponding function can reach the global minimum.Then,we use the variational method and some analytical techniques to obtain the existence of the positive solution of the equation whenλis small enough.
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
文摘In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the global existence of the solution to this system without any small condition on the initial data.
文摘托马斯.阿奎那的形而上学是以是(being)为中心、以本质(essence)和存在(existence)的关系学说为枢纽的存在论。阿奎那认为,形而上学或存在论所探讨的特殊的固有对象即是是(to on,esse,being)自身,或者称之为是之所以为是(esse in quantum esse,being as beinginjeneral)。他在论证是自身时强调实在意义上的是重于逻辑意义的是。是(being)包括本质(essence)与存在(existence);本质(essence)与存在(existence)皆为是者(beings)。而存在(existence)先于本质(essence);存在(existence)是是(being)之最具体的、个别的、实体的、独一无二的完美实现(act)。托马斯.阿奎那的存在论哲学颠覆了传统哲学中存在与本质的位置,它以一种存在主义代替本质主义,从而在形而上学历史上掀起一场革命。
文摘Aim The existence of generalized solution for a class of nonlinear partial differential equations with nonhanogeneous boundary condition was investigated. This problem arises from polymer processing concerned with the first initial-boundary value problem or the nonstationary floW of non-Newtonian viscous incompressiblee fluid through the slit dice. MethodsThe monotone operator theory and the Schauder's fixal point theorem were used. Results and Conclusion The existence theorem of generalized solutions for a the of nonlinear partial differential equations with nonhormogeneous boundary condition is proved under reasonable conditions
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
基金The National Natural Science Foundation of China(No.10672039)the Key Project of Ministry of Education of China(No.105083)
文摘Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact conditions are relaxed totally. First, the coerciveness of the functional is proved. Then the uniqueness of the solution of variational inequality for the elastoplastic contact problems is demonstrated. The existence of the solution is also demonstrated according to the sufficient conditions for the solution of the elliptic variational inequality. A mathematical foundation is developed for the variational extremum principle of elastoplastic contact problems. The developed variational extremum forms can give an effective and strict mathematical modeling to solve contact problems with mathematical programming.
文摘China English is an objective existence as a performance variety used in China.It is based on standard English and possesses Chinese characteristics.The Chinese characteristics of China English are reflected in the phonology,vocabulary,syntax,rhetoric and text,particularly in the vocabulary.This essay will discuss the features of China English from the following three aspects: the development of English in China;the comparison between China English,Pidgin English and Chinese English and the Chinese words borrowed by English.
基金supported by the Beijing Natural Science Foundation(1212003)。
文摘Let?denote a smooth,bounded domain in R^(N)(N≥2).Suppose that g is a nondecreasing C^(1)positive function and assume that b(x)is continuous and nonnegative inΩ,and that it may be singular on■Ω.In this paper,we provide sufficient and necessary conditions on the existence of boundary blow-up solutions to the p-Laplacian problem△_(p)u=b(x)g(u)for x∈Ω,u(x)→+∞as dist(x,■Ω)→0.The estimates of such solutions are also investigated.Moreover,when b has strong singularity,the nonexistence of boundary blow-up(radial)solutions and infinitely many radial solutions are also considered.
文摘In this paper we deal with the existence of infinitely many critical points of the even functional I(u)=integral from n=Q to (F(x,u,Du))+integral from n=(?)Q to (G(x,u)), u∈W^(1,p)(Ω),where G(x, u)=integral from n=o to u (g(x,t)dt), under the weak structure conditions on F(x, u, q) by the Mountain Pass Lemma.
基金supported by National Natural Science Foundation of China(10976026)
文摘In this paper, we are concerned with the existence and non-existence of global solutions of a semi-linear heat equation with fractional Laplacian. We obtain some extem sion of results of Weissler who considered the case α = 1, and h ≡ 1.
文摘We consider the global existence and decay of integral solutions to the parabolic-parabolic Keller-Segel system in d-dimension.On the one hand,by Banach fixed point theorem and some properties of heat kernel,we prove the local existence and the global existence of integral solutions for the different initial data under some conditions that involve the size of the initial data.On the other hand,in the case of global solutions,we obtain their optimal time decay by Gronwall’s lemma.
文摘We prove the existence of a ground state solution for the qusilinear elliptic equation in , under suitable conditions on a locally Holder continuous non-linearity , the non-linearity may exhibit a singularity as . We also prove the non-existence of radially symmetric solutions to the singular elliptic equation in , as where .
文摘This paper deals with positive solutions of a degenerate parabolic system: u t= Δ u m+ v p ln α(h+u), v t= Δ v n+u q ln β(h+v) with homogeneous Dirichlet boundary conditions and positive initial conditions. This system describes the processes of diffusion of heat and burning in two component continuous media with nonlinear conductivity and volume energy release. We obtain the global existence and blow up results of the solution relying on comparison with carefully constructed upper solutions and lower solutions.