Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performa...Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performance of DOA estimators may be deteriorated greatly if the non-uniformity of noise is ignored.To tackle this problem,we consider the problem of DOA es-timation in the presence of nonuniform noise by leveraging a singular value thresholding(SVT)based matrix completion method.Different from that the traditional SVT method apply fixed threshold,to improve the performance,the proposed method can obtain a more suitable threshold based on careful estimation of the signal-to-noise ratio(SNR)levels.Specifically,we firstly employ an SVT-based matrix completion method to estimate the noise-free covariance matrix.On this basis,the signal and noise subspaces are obtained from the eigendecomposition of the noise-free cov-ariance matrix.Finally,traditional subspace-based DOA estimation approaches can be directly ap-plied to determine the DOAs.Numerical simulations are performed to demonstrate the effective-ness of the proposed method.展开更多
Properties from random matrix theory allow us to uncover naturally embedded signals from different data sets. While there are many parameters that can be changed, including the probability distribution of the entries,...Properties from random matrix theory allow us to uncover naturally embedded signals from different data sets. While there are many parameters that can be changed, including the probability distribution of the entries, the introduction of noise, and the size of the matrix, the resulting eigenvalue and eigenvector distributions remain relatively unchanged. However, when there are certain anomalous eigenvalues and their corresponding eigenvectors that do not follow the predicted distributions, it could indicate that there’s an underlying non-random signal inside the data. As data and matrices become more important in the sciences and computing, so too will the importance of processing them with the principles of random matrix theory.展开更多
The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can b...The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.展开更多
A noise-reduction method with sliding called the local f-x Cadzow noise-reduction method, windows in the frequency-space (f-x) domain, is presented in this paper. This method is based on the assumption that the sign...A noise-reduction method with sliding called the local f-x Cadzow noise-reduction method, windows in the frequency-space (f-x) domain, is presented in this paper. This method is based on the assumption that the signal in each window is linearly predictable in the spatial direction while the random noise is not. For each Toeplitz matrix constructed by constant frequency slice, a singular value decomposition (SVD) is applied to separate signal from noise. To avoid edge artifacts caused by zero percent overlap between windows and to remove more noise, an appropriate overlap is adopted. Besides flat and dipping events, this method can enhance curved and conflicting events. However, it is not suitable for seismic data that contains big spikes or null traces. It is also compared with the SVD, f-x deconvolution, and Cadzow method without windows. The comparison results show that the local Cadzow method performs well in removing random noise and preserving signal. In addition, a real data example proves that it is a potential noise-reduction technique for seismic data obtained in areas of complex formations.展开更多
A T equivalent high frequency heterojunction bipolar transistor (HBT) noise model is reported.This model is derived from Hawkins noise model commonly used in Si BJT.The main modifications include the influence of th...A T equivalent high frequency heterojunction bipolar transistor (HBT) noise model is reported.This model is derived from Hawkins noise model commonly used in Si BJT.The main modifications include the influence of the ideality factor,emitter resistance,intrinsic base collector capacitance,extrinsic base collector capacitance and other parasitic elements of HBT represented in equivalent circuit topology.In order to calculate accurate noise parameters from the equivalent circuit,the noise correlation matrix method is used to avoid any simplifications generated in circuit transformations and complex noise measurements.The analysis of the influence of the equivalent circuit elements on the minimum noise figure is reported,the results of analysis agree well with the physics explanations.By means of the formulae derived from device physics of HBT,the influence of device parameters on the minimum noise figure is also represented.展开更多
This paper studies the effect of phase noise and fronthaul compression on a downlink cloud radio access network(C-RAN), where several remote radio heads(RRHs) are coordinated to communicate with users by a baseband un...This paper studies the effect of phase noise and fronthaul compression on a downlink cloud radio access network(C-RAN), where several remote radio heads(RRHs) are coordinated to communicate with users by a baseband unit(BBU) on the cloud server. In the system, the baseband signals are precoded at BBU, and then compressed before being transmitted to RRHs through capacity-limited fronthaul links which results in the compressive quantization noise. We assume the regularized zero-forcing precoding is performed with an imperfect channel state information and a compression strategy is applied at BBU. The effect of phase noise arising from nonideal local oscillators both at RRHs and users is considered. We propose an approximate expression for the downlink ergodic sum-rate of considered C-RAN utilizing large dimensional random matrix theory in the large-system regime. From simulation results, the accuracy of the approximate expression is validated, and the effect of phase noise and fronthaul compression can be analyzed theoretically based on the approximate expression.展开更多
This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The spec...This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.展开更多
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp...In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.展开更多
This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise....This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness.展开更多
The integral Helmholtz equation is derived with the acoustic radiation of railway bridges taken into acount and by using the transfer matrix method for railway bridge and the boundary el...The integral Helmholtz equation is derived with the acoustic radiation of railway bridges taken into acount and by using the transfer matrix method for railway bridge and the boundary element method for the infinite sonic field. Then, the noises generated by a high speed train passing over a bridge are analytically studied. It is shown that high speed railway noises are of wide frequency, and that reducing vibration does not necessary lowering noises unless the most significant noises at special frequencies are decreased.展开更多
Based on the active coupled line concept, a novel approach for efficient signal and noise modeling of millimeter-wave field-effect transistors is proposed. The distributed model considers the effect of wave propagatio...Based on the active coupled line concept, a novel approach for efficient signal and noise modeling of millimeter-wave field-effect transistors is proposed. The distributed model considers the effect of wave propagation along the device electrodes, which can significantly affect the device performance especially in the millimetre-wave range. By solving the multi-conductor transmission line equations using the Finite-Difference Time-Domain technique, the proposed procedure can accurately determine the signal and noise performance of the transistor. In order to demonstrate the proposed FET model accuracy, a distributed low-noise amplifier was designed and tested. A model selection is often a trade-off between procedure complexity and response accuracy. Using the proposed distributed model versus the circuit-based model will allow increasing the model frequency range.展开更多
The existing physical layer security algorithm, which is based on artificial noise, could affect legitimate receivers negatively when the number of users is no less than sending antennas in multi-user MIMO system. In ...The existing physical layer security algorithm, which is based on artificial noise, could affect legitimate receivers negatively when the number of users is no less than sending antennas in multi-user MIMO system. In order to improve security of multi-user MIMO system under this scenario, we propose a new multi-user MIMO system physical layer security algorithm based on joint channel state matrix. Firstly, multiple users are processed together, thus a multi-user joint channel state matrix is established. After achieving Singular Value Decomposition (SVD) of the joint channel state matrix, the minimum singular value is obtained, which can be utilized for precoding to eliminate the interference of artificial noise to legitimate receivers. Further, we also present an approach to optimize the power allocation. Simulation results show that the proposed algorithm can increase secrecy capacity by 0.1 bit/s/HZ averagely.展开更多
If Hall plates are used as magnetic field sensors they are usually powered up by a current source connected to a pair of non-neighboring contacts. The output voltage is tapped at another pair of non-neighboring contac...If Hall plates are used as magnetic field sensors they are usually powered up by a current source connected to a pair of non-neighboring contacts. The output voltage is tapped at another pair of non-neighboring contacts. In this paper we study more general operating conditions of Hall plates with an arbitrary number of contacts. In such hybrid operating modes current sources are connected to a first set of contacts and voltage sources to a second set of contacts. Output voltages are tapped at the first set of contacts and output currents are measured at the second set of contacts. All these output signals are multiplied by coefficients and added up. The purpose of this work is to figure out which operating mode and which Hall plate achieve maximum signal at minimum thermal noise and power dissipation. To this end we develop a theory, which gives the ratio of signal over noise and power as a function of the resistance matrix of Hall plates, of the supply voltages and currents, and of the coefficients. Optimization is done analytically in closed form and numerically for specific examples. The results are: 1) all operating modes have identical noise performance if their parameters are optimized;2) for any Hall plate one can measure its resistance matrix and insert its values into our formulae to obtain the optimum supply currents and coefficients for optimum noise performance.展开更多
Blind identification-blind equalization for Finite Impulse Response (FIR) Multiple Input-Multiple Output (MIMO) channels can be reformulated as the problem of blind sources separation. It has been shown that blind ide...Blind identification-blind equalization for Finite Impulse Response (FIR) Multiple Input-Multiple Output (MIMO) channels can be reformulated as the problem of blind sources separation. It has been shown that blind identification via decorrelating sub-channels method could recover the input sources. The Blind Identification via Decorrelating Sub-channels(BIDS)algorithm first constructs a set of decorrelators, which decorrelate the output signals of subchannels, and then estimates the channel matrix using the transfer functions of the decorrelators and finally recovers the input signal using the estimated channel matrix. In this paper, a new approximation of the input source for FIR-MIMO channels based on the maximum likelihood source separation method is proposed. The proposed method outperforms BIDS in the presence of additive white Gaussian noise.展开更多
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o...The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.展开更多
In this paper, the influence of the noise and delay upon the stability property of reaction-diffusion recurrent neural networks (RNNs) with the time-varying delay is discussed. The new and easily verifiable conditio...In this paper, the influence of the noise and delay upon the stability property of reaction-diffusion recurrent neural networks (RNNs) with the time-varying delay is discussed. The new and easily verifiable conditions to guarantee the mean value exponential stability of an equilibrium solution are derived. The rate of exponential convergence can be estimated by means of a simple computation based on these criteria.展开更多
Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the advers...Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.展开更多
Taguchi methods have proved to be successful over the last two decades for improvement of product quality and process performance. This study is carried out to simultaneously optimize the tribological properties: wear...Taguchi methods have proved to be successful over the last two decades for improvement of product quality and process performance. This study is carried out to simultaneously optimize the tribological properties: wear rate and frictional force of aluminum metal matrix composite. Al-Cu-Mg alloy reinforced with 6 Wt % of titanium dioxide was prepared using stir casting method. Dry sliding wear test was conducted to understand the tribological behavior of samples. The experiments were conducted as per the Taguchi design of experiment. The wear parameters chosen for the experiment were: sliding speed and load and sliding distance. Each parameter was assigned three levels. The experiment consists of 27 tests according to L27 orthogonal array. Signal to noise ratio analysis has been carried out to determine optimal parametric condition, which yields minimum wear rate and frictional force. Harrington’s desirability functional method is adopted for multifunctional optimization of tribological parameters and the confirmation experiments were conducted to verify the predicted model.展开更多
基金the National Natural Science Foundation of China(No.61771316).
文摘Usually,the problem of direction-of-arrival(DOA)estimation is performed based on the assumption of uniform noise.In many applications,however,the noise across the array may be nonuniform.In this situation,the performance of DOA estimators may be deteriorated greatly if the non-uniformity of noise is ignored.To tackle this problem,we consider the problem of DOA es-timation in the presence of nonuniform noise by leveraging a singular value thresholding(SVT)based matrix completion method.Different from that the traditional SVT method apply fixed threshold,to improve the performance,the proposed method can obtain a more suitable threshold based on careful estimation of the signal-to-noise ratio(SNR)levels.Specifically,we firstly employ an SVT-based matrix completion method to estimate the noise-free covariance matrix.On this basis,the signal and noise subspaces are obtained from the eigendecomposition of the noise-free cov-ariance matrix.Finally,traditional subspace-based DOA estimation approaches can be directly ap-plied to determine the DOAs.Numerical simulations are performed to demonstrate the effective-ness of the proposed method.
文摘Properties from random matrix theory allow us to uncover naturally embedded signals from different data sets. While there are many parameters that can be changed, including the probability distribution of the entries, the introduction of noise, and the size of the matrix, the resulting eigenvalue and eigenvector distributions remain relatively unchanged. However, when there are certain anomalous eigenvalues and their corresponding eigenvectors that do not follow the predicted distributions, it could indicate that there’s an underlying non-random signal inside the data. As data and matrices become more important in the sciences and computing, so too will the importance of processing them with the principles of random matrix theory.
基金supported by the National Natural Science Foundation of China(No.61271014)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20124301110003)the Graduated Students Innovation Fund of Hunan Province(No.CX2012B238)
文摘The method of recovering a low-rank matrix with an unknown fraction whose entries are arbitrarily corrupted is known as the robust principal component analysis (RPCA). This RPCA problem, under some conditions, can be exactly solved via convex optimization by minimizing a combination of the nuclear norm and the 11 norm. In this paper, an algorithm based on the Douglas-Rachford splitting method is proposed for solving the RPCA problem. First, the convex optimization problem is solved by canceling the constraint of the variables, and ~hen the proximity operators of the objective function are computed alternately. The new algorithm can exactly recover the low-rank and sparse components simultaneously, and it is proved to be convergent. Numerical simulations demonstrate the practical utility of the proposed algorithm.
基金support from the National Key Basic Research Development Program(Grant No.2007CB209600)National Major Science and Technology Program(Grant No.2008ZX05010-002)
文摘A noise-reduction method with sliding called the local f-x Cadzow noise-reduction method, windows in the frequency-space (f-x) domain, is presented in this paper. This method is based on the assumption that the signal in each window is linearly predictable in the spatial direction while the random noise is not. For each Toeplitz matrix constructed by constant frequency slice, a singular value decomposition (SVD) is applied to separate signal from noise. To avoid edge artifacts caused by zero percent overlap between windows and to remove more noise, an appropriate overlap is adopted. Besides flat and dipping events, this method can enhance curved and conflicting events. However, it is not suitable for seismic data that contains big spikes or null traces. It is also compared with the SVD, f-x deconvolution, and Cadzow method without windows. The comparison results show that the local Cadzow method performs well in removing random noise and preserving signal. In addition, a real data example proves that it is a potential noise-reduction technique for seismic data obtained in areas of complex formations.
文摘A T equivalent high frequency heterojunction bipolar transistor (HBT) noise model is reported.This model is derived from Hawkins noise model commonly used in Si BJT.The main modifications include the influence of the ideality factor,emitter resistance,intrinsic base collector capacitance,extrinsic base collector capacitance and other parasitic elements of HBT represented in equivalent circuit topology.In order to calculate accurate noise parameters from the equivalent circuit,the noise correlation matrix method is used to avoid any simplifications generated in circuit transformations and complex noise measurements.The analysis of the influence of the equivalent circuit elements on the minimum noise figure is reported,the results of analysis agree well with the physics explanations.By means of the formulae derived from device physics of HBT,the influence of device parameters on the minimum noise figure is also represented.
基金supported in part by the Natural Science Foundation of China (NSFC) under Grant U1805262, 61871446, and 61671251supported by NSFC under Grant 61625106 and Grant 61531011
文摘This paper studies the effect of phase noise and fronthaul compression on a downlink cloud radio access network(C-RAN), where several remote radio heads(RRHs) are coordinated to communicate with users by a baseband unit(BBU) on the cloud server. In the system, the baseband signals are precoded at BBU, and then compressed before being transmitted to RRHs through capacity-limited fronthaul links which results in the compressive quantization noise. We assume the regularized zero-forcing precoding is performed with an imperfect channel state information and a compression strategy is applied at BBU. The effect of phase noise arising from nonideal local oscillators both at RRHs and users is considered. We propose an approximate expression for the downlink ergodic sum-rate of considered C-RAN utilizing large dimensional random matrix theory in the large-system regime. From simulation results, the accuracy of the approximate expression is validated, and the effect of phase noise and fronthaul compression can be analyzed theoretically based on the approximate expression.
基金Supported by the National Natural Science Foundation of China(No.60496311)
文摘This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.
基金supported by the National Natural Science Foundation of China(61571149)the Natural Science Foundation of Heilongjiang Province(LH2020F017)+1 种基金the Initiation Fund for Postdoctoral Research in Heilongjiang Province(LBH-Q19098)the Heilongjiang Province Key Laboratory of High Accuracy Satellite Navigation and Marine Application Laboratory(HKL-2020-Y01).
文摘In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006,60521003)the National High Technology Research and Development Program of China (863 Program) (Grant No 2006AA04Z183)+2 种基金the Natural Science Foundation of Liaoning Province of China (Grant No 20062018)973 Project (Grant No 2009CB320601)111 Project (Grant No B08015)
文摘This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness.
文摘The integral Helmholtz equation is derived with the acoustic radiation of railway bridges taken into acount and by using the transfer matrix method for railway bridge and the boundary element method for the infinite sonic field. Then, the noises generated by a high speed train passing over a bridge are analytically studied. It is shown that high speed railway noises are of wide frequency, and that reducing vibration does not necessary lowering noises unless the most significant noises at special frequencies are decreased.
文摘Based on the active coupled line concept, a novel approach for efficient signal and noise modeling of millimeter-wave field-effect transistors is proposed. The distributed model considers the effect of wave propagation along the device electrodes, which can significantly affect the device performance especially in the millimetre-wave range. By solving the multi-conductor transmission line equations using the Finite-Difference Time-Domain technique, the proposed procedure can accurately determine the signal and noise performance of the transistor. In order to demonstrate the proposed FET model accuracy, a distributed low-noise amplifier was designed and tested. A model selection is often a trade-off between procedure complexity and response accuracy. Using the proposed distributed model versus the circuit-based model will allow increasing the model frequency range.
文摘The existing physical layer security algorithm, which is based on artificial noise, could affect legitimate receivers negatively when the number of users is no less than sending antennas in multi-user MIMO system. In order to improve security of multi-user MIMO system under this scenario, we propose a new multi-user MIMO system physical layer security algorithm based on joint channel state matrix. Firstly, multiple users are processed together, thus a multi-user joint channel state matrix is established. After achieving Singular Value Decomposition (SVD) of the joint channel state matrix, the minimum singular value is obtained, which can be utilized for precoding to eliminate the interference of artificial noise to legitimate receivers. Further, we also present an approach to optimize the power allocation. Simulation results show that the proposed algorithm can increase secrecy capacity by 0.1 bit/s/HZ averagely.
文摘If Hall plates are used as magnetic field sensors they are usually powered up by a current source connected to a pair of non-neighboring contacts. The output voltage is tapped at another pair of non-neighboring contacts. In this paper we study more general operating conditions of Hall plates with an arbitrary number of contacts. In such hybrid operating modes current sources are connected to a first set of contacts and voltage sources to a second set of contacts. Output voltages are tapped at the first set of contacts and output currents are measured at the second set of contacts. All these output signals are multiplied by coefficients and added up. The purpose of this work is to figure out which operating mode and which Hall plate achieve maximum signal at minimum thermal noise and power dissipation. To this end we develop a theory, which gives the ratio of signal over noise and power as a function of the resistance matrix of Hall plates, of the supply voltages and currents, and of the coefficients. Optimization is done analytically in closed form and numerically for specific examples. The results are: 1) all operating modes have identical noise performance if their parameters are optimized;2) for any Hall plate one can measure its resistance matrix and insert its values into our formulae to obtain the optimum supply currents and coefficients for optimum noise performance.
基金Supported by the National Natural Science Foundation of China (No.60172048)
文摘Blind identification-blind equalization for Finite Impulse Response (FIR) Multiple Input-Multiple Output (MIMO) channels can be reformulated as the problem of blind sources separation. It has been shown that blind identification via decorrelating sub-channels method could recover the input sources. The Blind Identification via Decorrelating Sub-channels(BIDS)algorithm first constructs a set of decorrelators, which decorrelate the output signals of subchannels, and then estimates the channel matrix using the transfer functions of the decorrelators and finally recovers the input signal using the estimated channel matrix. In this paper, a new approximation of the input source for FIR-MIMO channels based on the maximum likelihood source separation method is proposed. The proposed method outperforms BIDS in the presence of additive white Gaussian noise.
文摘The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.
文摘In this paper, the influence of the noise and delay upon the stability property of reaction-diffusion recurrent neural networks (RNNs) with the time-varying delay is discussed. The new and easily verifiable conditions to guarantee the mean value exponential stability of an equilibrium solution are derived. The rate of exponential convergence can be estimated by means of a simple computation based on these criteria.
基金Supported by the National Natural Science Foundation of China(61273160)the Natural Science Foundation of Shandong Province(ZR2011FM014)+1 种基金the Fundamental Research Funds for the Central Universities(12CX06071A)the Postgraduate Innovation Funds of China University of Petroleum(CX2013060)
文摘Conventional process monitoring method based on fast independent component analysis(Fast ICA) cannot take the ubiquitous measurement noises into account and may exhibit degraded monitoring performance under the adverse effects of the measurement noises. In this paper, a new process monitoring approach based on noisy time structure ICA(Noisy TSICA) is proposed to solve such problem. A Noisy TSICA algorithm which can consider the measurement noises explicitly is firstly developed to estimate the mixing matrix and extract the independent components(ICs). Subsequently, a monitoring statistic is built to detect process faults on the basis of the recursive kurtosis estimations of the dominant ICs. Lastly, a contribution plot for the monitoring statistic is constructed to identify the fault variables based on the sensitivity analysis. Simulation studies on the continuous stirred tank reactor system demonstrate that the proposed Noisy TSICA-based monitoring method outperforms the conventional Fast ICA-based monitoring method.
文摘Taguchi methods have proved to be successful over the last two decades for improvement of product quality and process performance. This study is carried out to simultaneously optimize the tribological properties: wear rate and frictional force of aluminum metal matrix composite. Al-Cu-Mg alloy reinforced with 6 Wt % of titanium dioxide was prepared using stir casting method. Dry sliding wear test was conducted to understand the tribological behavior of samples. The experiments were conducted as per the Taguchi design of experiment. The wear parameters chosen for the experiment were: sliding speed and load and sliding distance. Each parameter was assigned three levels. The experiment consists of 27 tests according to L27 orthogonal array. Signal to noise ratio analysis has been carried out to determine optimal parametric condition, which yields minimum wear rate and frictional force. Harrington’s desirability functional method is adopted for multifunctional optimization of tribological parameters and the confirmation experiments were conducted to verify the predicted model.