The lower Cambrian Niutitang Formation, a widespread black shale deposition, is of geological interest because of its polymetallic beds, Cambrian explosion, depositional ages, dramatic environmental changes and so on....The lower Cambrian Niutitang Formation, a widespread black shale deposition, is of geological interest because of its polymetallic beds, Cambrian explosion, depositional ages, dramatic environmental changes and so on. Previous study focused mainly on inorganic geochemistry and few studies have investigated the organic fractions of upper Neoproterozoic-lower Cambrian strata in South China. Here we report a study of biomarkers plus organic carbon isotopes for black shales from Ganziping, Hunan Province (China). All the saturated hydrocarbon fractions have a unimodal distribution of n-alkanes, a high content of short-chain alkanes and maximize at C 19 or C 20 (C 23 for sample Gzh00-1). The C 27 /C 29 sterane ratio ranges from 0.77 to 1.20 and 4-methylsteranes are in low abundance. These parameters indicate that algae and bacteria are the important primary producers. Furthermore, biomarker maturity proxies show the samples to be higher maturity. The low Pr/Ph values (0.7) suggest that the samples were deposited under anoxic conditions and, likely, under stratified water columns. In addition, 25-norhopanes and gammacerane are present as diagnostic indicators of normal marine salinity and dysoxic to anoxic conditions. During the Early Tommotian, known to coincide with a transgression event, small shelly fossils increased in abundance and diversity. Moreover, positive δ 13 C org excursions close to 1.4‰ occur at the base of the Tommotian stage. In summary, the Early Cambrian black shales were deposited under dramatic paleoenvironmental changes, including oceanic anoxia, higher primary productivity and sea-level rise.展开更多
The Ediacaran and early Cambrian black shales are widespread across the South China Craton (Yangtze and Cathaysia blocks). However, the trace element distribution patterns of the Ediacaran and early Cambrian black s...The Ediacaran and early Cambrian black shales are widespread across the South China Craton (Yangtze and Cathaysia blocks). However, the trace element distribution patterns of the Ediacaran and early Cambrian black shales in the Cathaysia Block are still unclear. In this study, thirty- four black shale samples in the Lechangxia Group (Ediacaran) and thirteen black shale samples in the lower Bacun Group (early Cambrian) from Guangning area, western Guangdong Province, South China, were analyzed for major and trace elements concentrations. Compared to the upper continental crust, the Ediacaran black shales exhibit strongly enriched Se, Ga, and As with enrichment factor values (EF) higher than 10, significantly enrichedBi and Rb (10〉EF〉5), weakly enriched Mo, Ba, Cs, V, In, Be, TI, and Th (5〉EF〉2), normal U, Cr, Cd, Sc, Pb, Cu, and Li (2〉EF〉0.5), and depleted Ni, Zn, Sr, and Co. Early Cambrian black shales display strongly enriched Se, Ga, and As, significantly enriched Ba, Bi, and Rb, weakly enriched Mo, Cs, Cd, V, U, Be, In, and TI, normal Sc, Th, Cr, Li, Cu, Ni, and Pb and depleted Co, Zn, and Sr. Moreover, Se is the most enriched trace element in the Ediacaran and early Cambrian black shales: concentrations vary from 0.25 to 30.09 ppm and 0.54 to 5.01 ppm, and averaging 4.84 and 1.72 ppm, with average EF values of 96.87 and 34.32, for the Ediacaran and early Cambrian shales respectively. The average concentration of Se in the Ediacaran black shales is 2.8 times higher than that of early Cambrian black shales. Se contents in the Ediacaran and early Cambrian black shales exhibit significant variation (P = 0.03). Provenance analysis showed that Se contents of both the Ediacaran and early Cambrian black shales were without detrital provenance and volcanoclastic sources, hut of hydrothermal origin. The deep sources of Se and the presence of pyrite may explain the higher Se contents in the Ediacaran black shales. Similar with the Se-rich characteristics of the contemporaneous black shales in the south Qingling Mountain and Yangtze block, the Ediacaran and early Cambrian black shales in Guangning area, Cathaysia, are also enriched in Se, which may provide a clue for looking for the selenium-rich resources in western Guangdong Province.展开更多
A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differ...A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differentiation mechanism between polymetallic deposits(Ni-Mo and V),the Zhijin Gezhongwu profile located in the outer shelf and the Sansui Haishan V deposit located in the lower slope are selected to study the in situ sulfur isotopes and trace elements of pyrite.The results show that δ^(34)S values of pyrite vary widely from−7.8‰to 28‰in the Gezhongwu profile,while the δ^(34)S values are relatively uniform(from 27.8‰to 38.4‰)in the Haishan profile.The isotopic S composition is consistent with the transition that occurs in the sedimentary phase from the shelf to the deep sea on the transgressive Yangtze platform;this indicates that the δ^(34)SO_(4)^(2−)values in seawater must be differently distributed in depositional environments.The sulfur in the Ni-Mo layer is produced after the mixing of seawater and hydrothermal fluid,while the V layer mainly originates from seawater.Overall,the Ni-Mo and V deposits have been differentiated primarily on the basis of the combined effect of continental weathering and hydrothermal fluid.展开更多
In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platfo...In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platform with a width of ca. 200-400 km and a length of more than 1500 km, we present new paired δ13C data on carbonates (δ13Ccarb) and associated organic carbon (δ13Corg) and δ34Spy data on sedimentary pyrite in black shales from three sections (Ganziping, Shancha and Xiaohekou) located in NW Hunan, China. In these sections, a total of 82 Lower Cambrian black shale samples have δ13Ccarb values ranging from -4.0‰ to 1.7‰ with an average value of -2.1‰, and δ13Corg values between -34.9‰ and -28.8‰, averaging -31.9‰. The ?34Spy values of 16 separated sedi-mentary pyrite samples from the black shales vary between +10.2‰ and +28.7‰ with an average value of +19.5‰, presenting a small isotope fractionation between seawater sulfate and sedimentary sulfide. The model calculation based on credible data from the paired analyses for δ13Ccarb and δ13Corg of 11 black shale samples shows a high CO2 concentration in the Early Cambrian atmosphere, about 20 times higher than pre-industrial revolution values, consis-tent with previous global predictions. The small sulfur isotope fractionation between seawater sulfate and sedimen-tary sulfide in black shales, only 15.5‰ on average, implies a low sulfate level in the Early Cambrian seawater around 1 mmol. In combination with a high degree of pyritization (DOP) in the black shales, it is suggested that sul-fidic deep-ocean water could have lingered up to the earliest Cambrian in this area. The black shale deposition is envisaged in a stratified marine basin, with a surface euphotic and oxygenated water layer and sulfidic deeper water, controlled by a continental margin rift.展开更多
The Early Cambrian represents a critical time period characterized by extraordinary biological innovations and dynamic redox conditions in seawaters.Nitrogen isotopic signatures of ancient sediments have the potential...The Early Cambrian represents a critical time period characterized by extraordinary biological innovations and dynamic redox conditions in seawaters.Nitrogen isotopic signatures of ancient sediments have the potential to elucidate the evolutionary path of marine redox states and the biogeochemical nitrogen cycle within the water column of the Early Cambrian ocean.While existing research on this topic has predominantly focused on South China,the exploration of other continental margins has been limited,leaving contradictory hypotheses untested.In this study,pairedδ^(15)N andδ^(13)C org analyses were performed on the Lower Cambrian successions from the Shiairike section(inner ramp)and Well Tadong 2(deep shelf/basin)in the northwestern and eastern Tarim Basin,respectively.Our data from the Shiairike section reveal a discernible shift in the operation of different nitrogen cycles for the black chert-shale unit,also referred to as the black rock series in Chinese literature,of the Yurtus Formation(Fortunian stage to lower Stage 3).Oscillatingδ^(15)N values for its lower part are suggestive of alternating anaerobic assimilation of NH 4+and denitrification/anammox.This is likely attributed to a shallow,unstable chemocline consistent with the upwelling and incursion of deep,anoxic waters during a major transgression.In contrast,aerobic nitrogen cycling,indicated by positiveδ^(15)N values of>2‰,dominated the upper part alongside a reduction in upwelling intensity.On the other hand,theδ^(15)N signatures of Xishanbulake and Xidashan Formations of Well Tadong 2,which encompass a time interval from the Cambrian Fortunian Age to Age 4,are indicative of N_(2)fixation by diazotrophs as the major nitrogen source.The two studied intervals,although not time-equivalent,exhibit separated states of nitrogen cycling at least during the deposition of the Yurtus black rock series.The spatially different nitrogen cycling of the studied sections is compatible with a redox-stratified ocean during the deposition of the Yurtus black rock series.The build-up of a NO_(3)−reservoir and aerobic nitrogen cycling in seawater was largely restricted to near-shore settings whereas anaerobic nitrogen cycling dominated by N_(2)fixation served as the main nitrogen uptake pathway in off-shore settings.展开更多
Analyses of organic carbon, nitrogen, sulfur and iron have been performed in order to understand sources and preservation of organic matter in black shale of the Buxin Formation (Early Paleogene) from the Sanshui Basi...Analyses of organic carbon, nitrogen, sulfur and iron have been performed in order to understand sources and preservation of organic matter in black shale of the Buxin Formation (Early Paleogene) from the Sanshui Basin. The C/N ratios show that the organic matter is characterized by a mixture of terrestrial and phytoplanktonic contributions. The relative importance of different sources depend on climate conditions and most of organic matter is of terrestrial origin. The relationships between C, S and Fe indicate that the brackish environment with alternation of anoxia and low-O2 developed in the bottom waters during the deposition of these organic-rich sediments as a result of a mixed setting of thermal stratification and salinity stratification, the latter being the consequence of intermittent sea water incursion. Bacterial sulfate reduction is the most effective early diagenesis affecting the preservation of organic matter. The intensity of sulfate reduction is related to the relative proportion of metabolizable organic matter supplied to sediments.展开更多
Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carhon group of isotopes with the δ13C values from - 27% to - 35 %, which are lower than those of the contempo...Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carhon group of isotopes with the δ13C values from - 27% to - 35 %, which are lower than those of the contempomneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristies of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks.展开更多
The extensive transgression that occurred on the Yangtze Plate in Early Cambrian led to a massive organic carbon pool in the Niutitang Formation. A black shale core section from 3 251.08 to 3 436.08 m beneath the Eart...The extensive transgression that occurred on the Yangtze Plate in Early Cambrian led to a massive organic carbon pool in the Niutitang Formation. A black shale core section from 3 251.08 to 3 436.08 m beneath the Earth's surface was studied to estimate the contribution of oxygenic photosynthesis to organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea. Results indicate that the oxygenic photosynthesis played the most important role in carbon fixation in Early Cambrian. Organic carbon sink was mainly contributed by photosynthetic microorganisms, e.g., cyanobacteria, algae and archaea. The Niutitang Formation was formed in a deep anoxic marine shelf sedimentary environment at a sedimentation rate of ~0.09±0.03 mm/yr. The initial TOC abundance in Niutitang shale ranged from 0.18% to 7.09%, with an average of 2.15%. In accordance with the sedimentation rate and initial TOC abundance, organic carbon sink fluxes were calculated and found to range from 0.21 to 8.10×10~3 kg/km^2·yr^(-1), especially the organic carbon sink fluxes in depth between 3 385 and 3 470 m range from 3.80 to 8.10×10~3 kg/km^2·yr^(-1), with an average of ~6.03×10~3 kg/km^2·yr^(-1), which is much higher than that of contemporary marine sediments. The organic carbon sink fluxes of Niutitang shale are equal to 0.56 to 21.61×10~3 kg/km^2·yr^(-1) net oxygen emitted into the Early Cambrian ocean and atmosphere, this emitted oxygen may have significantly promoted the oxygen level of the Earth's surface and diversification of metazoans.展开更多
There are different sulfur forms in the black shales from theEarly Cambrian of the Yangtze platform. With its emphasis on pyrite and organosulfur, this paper discusses their distribution and formation. The research sh...There are different sulfur forms in the black shales from theEarly Cambrian of the Yangtze platform. With its emphasis on pyrite and organosulfur, this paper discusses their distribution and formation. The research shows that sulfur phases take regular variations laterally as well as vertically in the research areas. In western researched profile with high terrigenous supply at the time it formed, there exists a larger amount of pyrite and less organosulfur, and pyrite amount declines while organosulfur content increases upwards along the profile. This black shale profile is characterized by relatively light sulfur isotope composition with evolution trend of becoming heavier both for pyrite and organosulfur from bottom to top along the profile. Opposite situation occurs in eastern profiles which were located farther away from terrigenous land. Here pyrite amount obviously decreases and organic matter has combined more sulfur, although these two kinds of sulfur species take similar trend in content variation along profiles to that for western profile. At the same time more 34S is accumulated in sulfur species of black shale samples from eastern profile, and sulfur isotope composition gradually turns lighter from bottom to top. In combination with other information of iron, organic carbon contents and petrographic features, it can be established that sea-level change, supply of terrigenous matters, tectonic background and natures of paleoceanic chemistry have exerted great influence on the distribution of sulfur species in these black shales.展开更多
Control of various factors, including mineral components, primary productivity and redox level, on the total organic carbon(TOC) in the lower Cambrian black shale from southeastern margin of Upper Yangtze(Taozichong, ...Control of various factors, including mineral components, primary productivity and redox level, on the total organic carbon(TOC) in the lower Cambrian black shale from southeastern margin of Upper Yangtze(Taozichong, Longbizui and Yanbei areas) is discussed in detail in this article. Mineral components in the study strata are dominated by quartz and clay minerals. Quartz in the Niutitang Formation is mainly of biogenic origin, and the content is in positive correlation with TOC, while the content of clay minerals is negatively correlated with TOC. Primary productivity, represented by the content of Mobio(biogenic molybdenum), Babio(biogenic barium) and phosphorus, is positively correlated with TOC. The main alkanes in studied samples are nCC, and odd–even priority values are closed to 1(0.73–1.13), which suggest the organic matter source was marine plankton. Element content ratios of U/Th and Ni/Co and compound ratio Pr/Ph indicate dysoxic–anoxic bottom water, with weak positive relative with TOC. In total, three main points can be drawn to explain the relationship between data and the factors affecting organic accumulation:(1) quartz-rich and clay-mineral-poor deep shelf–slope–basin environment was favorable for living organisms;(2) high productivity provided the material foundation for organic generation;(3) the redox conditions impact slightly on the content of organic matter under high productivity and dysoxic–anoxic condition.展开更多
Systematic analyses of noble metal elements in the Lower Cambrian black rock series of South China are reported. Correlations of w (Os)/ w (Ir), w (Au)/ w (Ir), w (Ag)/ w (Au), w (Pt+Pd)/ w (Os+R...Systematic analyses of noble metal elements in the Lower Cambrian black rock series of South China are reported. Correlations of w (Os)/ w (Ir), w (Au)/ w (Ir), w (Ag)/ w (Au), w (Pt+Pd)/ w (Os+Ru+Rh+Ir), relations of noble metal and platinum group element (PGE) distribution patterns reveal that the noble metals are not directly from extraterrestrial materials. Studying the data of 9 aspects, the authors conclude that the noble metals were mainly from ultramafic mafic igneous rocks and their enrichment in black rocks is mainly controlled by hydrothermal fluid.展开更多
Adsorption experiments were made at room temperature and neutral pH value on different types of min-erals associated with the Lower Cambrian black shale series polymetallic layers in Hunan and Guizhou provinces on nan...Adsorption experiments were made at room temperature and neutral pH value on different types of min-erals associated with the Lower Cambrian black shale series polymetallic layers in Hunan and Guizhou provinces on nanometer-sized Pt colloids and PtCl42--bearing ionic solutions with an attempt to constrain the relationship between the different types of minerals in the polymetallic layers and the enrichment of platinum group elements (PGEs). Experimental results showed that the different types of minerals show strong selectivity to the adsorption of nano-meter-sized Pt colloids and PtCl42--bearing ionic solutions. Metallic sulfides, organic matter and clay minerals are the strong adsorbents of PGEs, while quartz, albite, muscovite and other silicate minerals show a week adsorbility to both of them. This phenomenon is well consistent with the geological fact that metallic sulfides, organic matter and clay minerals in the polymetallic layers of the black shale series are the major carrier minerals of PGEs, giving a thorough explanation to the mechanism of enrichment of previous metal elements. Adsorption may be a principal mechanism of enrichment of precious metal elements under lower temperature conditions. The presence of the aforementioned strong adsorbents is the good geochemical barriers for the enrichment of PGEs.展开更多
Early Paleozoic black organic sediments and bentonites occur widely in the craton basin within the Yangtze block and are generally believed to be genetically related to a specific tectonic setting on the cratonic boun...Early Paleozoic black organic sediments and bentonites occur widely in the craton basin within the Yangtze block and are generally believed to be genetically related to a specific tectonic setting on the cratonic boundary.However,the intimate relationship between their origins and the dynamic mechanisms are unclear,as exemplified by the genesis of the black shale series and bentonites from the Wufeng Formation during the Ordovician–Silurian transition(OST).In order to reveal the relationship between the Wufeng Formation and the convergence of the Yangtze and Cathaysia blocks(i.e.,the intracontinental Kwangsian Orogeny),two stratigraphic sections respectively in Zhaotong area(Northeast Yunnan)and Puyi area(Northwestern Guizhou)that were located in the semi-restricted inner Yangtze Sea during the OST were systematically studied,on the basis of whole-rock geochemical composition,pyriteδ^(34)S(δ^(34)Spy),total organic carbon(TOC),stable Sr isotope,pyrite framboid size distribution and zircon U-Pb age,trace elements.The evidence shows that the paleo-oceanic environment changed significantly at the turn of the early–late Katian and formed the black shale series in the Wufeng Formation.These acritarch assemblages were formed in the transition process of the Upper Yangtze Basin from passive continental margin basin to foreland basin during this interval.Based on previous research on the genetic relationship between black shale series and plate tectonic movement,a basin-mountain evolution model suitable for South China in the Late Ordovician is presented.The two bentonites in the Wufeng Formation with U-Pb ages of 445.5±0.8 Ma and 441.9±2.4 Ma primarily originated from the intermediate–acid volcanic eruption during the collision and convergence between the Yangtze and Cathaysia blocks in the Late Ordovician,the provenance region probably being located in the Jiangnan orogenic belt.Thus,we believe that the appearance of the black shale series and bentonite in the Wufeng Formation at the turn of the early–late Katian may represent the initiation of basin-mountain transformation and the Kwangsian Orogeny in South China,which provides important evidence for the collision and convergence of the Yangtze and Cathaysia blocks in the Late Ordovician.展开更多
扬子地台寒武系下统存在富含V、Ni、Mo和铂族元素(platinum group element, PGE)等的黑色页岩,局部地区有U或者Ba、Hg、As等的富集,研究这些元素富集机理有利于寻找相关矿产或者探究地质事件。6 500万年前的小行星撞击地球产生了高PGE...扬子地台寒武系下统存在富含V、Ni、Mo和铂族元素(platinum group element, PGE)等的黑色页岩,局部地区有U或者Ba、Hg、As等的富集,研究这些元素富集机理有利于寻找相关矿产或者探究地质事件。6 500万年前的小行星撞击地球产生了高PGE含量的地层或者化石,依据这一事实和陨石的特征及其他地质地球化学证据,推断下寒武统黑色页岩中Ni-Mo-PGE富集是陨石撞击结果,PGE中的Ir、Os富集最明显是因为二者最抗淋滤。U在康滇地轴东侧黑色页岩中最高可达480×10^(-6),因康滇地轴本身就存在混合型铀矿,推测黑色页岩中U来自它的风化。据V和Ba-Hg-As等的地化特性,认为V富集是受生物活动影响,但因V易于在热泉水中富集,故寒武纪早期泛非运动的构造-热事件可导致V富集成矿,Ba、Hg、As也因该事件产生构造裂隙后,它们优先随热液沿裂隙上升富集,并在海底局部成矿。此外,5.65亿年前的埃迪卡拉动物群发生地基本上就是5.8亿年前小行星撞击地点,提出此次行星撞击可能与埃迪卡拉生物群出现存在因果关系。由于在中国存在寒武纪澄江生物群大爆发事件,推测该次生物大爆发之前存在的下寒武统黑色页岩也存在陨石撞击痕迹。寒武系下统的含岩屑细砂岩夹黑色页岩甚至砾岩,反映了黑色页岩沉积时存在的突变沉积环境,加上其他地球化学特征也支持小行星撞击说。展开更多
基金supported by the "CAS Hundred Talents"Foundation of the Chinese Academy of Sciences to H.Z.,National Natural Science Foundation of China (Grant No.41102066, 40972084)Natural Science Foundation Project of CQ CSTC (Grant No. 2009BB7383)Opening Foundation of the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences
文摘The lower Cambrian Niutitang Formation, a widespread black shale deposition, is of geological interest because of its polymetallic beds, Cambrian explosion, depositional ages, dramatic environmental changes and so on. Previous study focused mainly on inorganic geochemistry and few studies have investigated the organic fractions of upper Neoproterozoic-lower Cambrian strata in South China. Here we report a study of biomarkers plus organic carbon isotopes for black shales from Ganziping, Hunan Province (China). All the saturated hydrocarbon fractions have a unimodal distribution of n-alkanes, a high content of short-chain alkanes and maximize at C 19 or C 20 (C 23 for sample Gzh00-1). The C 27 /C 29 sterane ratio ranges from 0.77 to 1.20 and 4-methylsteranes are in low abundance. These parameters indicate that algae and bacteria are the important primary producers. Furthermore, biomarker maturity proxies show the samples to be higher maturity. The low Pr/Ph values (0.7) suggest that the samples were deposited under anoxic conditions and, likely, under stratified water columns. In addition, 25-norhopanes and gammacerane are present as diagnostic indicators of normal marine salinity and dysoxic to anoxic conditions. During the Early Tommotian, known to coincide with a transgression event, small shelly fossils increased in abundance and diversity. Moreover, positive δ 13 C org excursions close to 1.4‰ occur at the base of the Tommotian stage. In summary, the Early Cambrian black shales were deposited under dramatic paleoenvironmental changes, including oceanic anoxia, higher primary productivity and sea-level rise.
基金the National Natural Science Foundation of China (Grant No.41172310, 41472322 and 40872210)the National Basic Research Program of China (Grant No.2014CB238906)the Local Science and Technology Tasks "Distribution Patterns and Prospect of Exploitation and Utilization of Selenium in Foshan area, Guangdong" and "Construction for Laboratory of Selenium Resources Comprehensive Utilization"
文摘The Ediacaran and early Cambrian black shales are widespread across the South China Craton (Yangtze and Cathaysia blocks). However, the trace element distribution patterns of the Ediacaran and early Cambrian black shales in the Cathaysia Block are still unclear. In this study, thirty- four black shale samples in the Lechangxia Group (Ediacaran) and thirteen black shale samples in the lower Bacun Group (early Cambrian) from Guangning area, western Guangdong Province, South China, were analyzed for major and trace elements concentrations. Compared to the upper continental crust, the Ediacaran black shales exhibit strongly enriched Se, Ga, and As with enrichment factor values (EF) higher than 10, significantly enrichedBi and Rb (10〉EF〉5), weakly enriched Mo, Ba, Cs, V, In, Be, TI, and Th (5〉EF〉2), normal U, Cr, Cd, Sc, Pb, Cu, and Li (2〉EF〉0.5), and depleted Ni, Zn, Sr, and Co. Early Cambrian black shales display strongly enriched Se, Ga, and As, significantly enriched Ba, Bi, and Rb, weakly enriched Mo, Cs, Cd, V, U, Be, In, and TI, normal Sc, Th, Cr, Li, Cu, Ni, and Pb and depleted Co, Zn, and Sr. Moreover, Se is the most enriched trace element in the Ediacaran and early Cambrian black shales: concentrations vary from 0.25 to 30.09 ppm and 0.54 to 5.01 ppm, and averaging 4.84 and 1.72 ppm, with average EF values of 96.87 and 34.32, for the Ediacaran and early Cambrian shales respectively. The average concentration of Se in the Ediacaran black shales is 2.8 times higher than that of early Cambrian black shales. Se contents in the Ediacaran and early Cambrian black shales exhibit significant variation (P = 0.03). Provenance analysis showed that Se contents of both the Ediacaran and early Cambrian black shales were without detrital provenance and volcanoclastic sources, hut of hydrothermal origin. The deep sources of Se and the presence of pyrite may explain the higher Se contents in the Ediacaran black shales. Similar with the Se-rich characteristics of the contemporaneous black shales in the south Qingling Mountain and Yangtze block, the Ediacaran and early Cambrian black shales in Guangning area, Cathaysia, are also enriched in Se, which may provide a clue for looking for the selenium-rich resources in western Guangdong Province.
基金supported by the National Natural Science Foundation of China(Grant Nos.42272103,92062221,42063009,U1812402)the Guizhou Provincial Science and Technology Projects(Grant No.Qiankehejichu–ZK[2022]common 213)the Higher Education Scientific Research Projects of the Education Department of Guizhou Province(Grant No.Qianjiaoji[2022]157).
文摘A polymetallic layer is usually developed at the bottom of the early Cambrian black shale in Guizhou Province.The mineral that makes up the polymetallic layer is related to the sedimentary facies.To analyze the differentiation mechanism between polymetallic deposits(Ni-Mo and V),the Zhijin Gezhongwu profile located in the outer shelf and the Sansui Haishan V deposit located in the lower slope are selected to study the in situ sulfur isotopes and trace elements of pyrite.The results show that δ^(34)S values of pyrite vary widely from−7.8‰to 28‰in the Gezhongwu profile,while the δ^(34)S values are relatively uniform(from 27.8‰to 38.4‰)in the Haishan profile.The isotopic S composition is consistent with the transition that occurs in the sedimentary phase from the shelf to the deep sea on the transgressive Yangtze platform;this indicates that the δ^(34)SO_(4)^(2−)values in seawater must be differently distributed in depositional environments.The sulfur in the Ni-Mo layer is produced after the mixing of seawater and hydrothermal fluid,while the V layer mainly originates from seawater.Overall,the Ni-Mo and V deposits have been differentiated primarily on the basis of the combined effect of continental weathering and hydrothermal fluid.
基金supported jointly by the National Basic Research Program of China (No. 2007CB411301)Doctoral Fund of Ministry of Education of China (No. 20060284039)
文摘In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platform with a width of ca. 200-400 km and a length of more than 1500 km, we present new paired δ13C data on carbonates (δ13Ccarb) and associated organic carbon (δ13Corg) and δ34Spy data on sedimentary pyrite in black shales from three sections (Ganziping, Shancha and Xiaohekou) located in NW Hunan, China. In these sections, a total of 82 Lower Cambrian black shale samples have δ13Ccarb values ranging from -4.0‰ to 1.7‰ with an average value of -2.1‰, and δ13Corg values between -34.9‰ and -28.8‰, averaging -31.9‰. The ?34Spy values of 16 separated sedi-mentary pyrite samples from the black shales vary between +10.2‰ and +28.7‰ with an average value of +19.5‰, presenting a small isotope fractionation between seawater sulfate and sedimentary sulfide. The model calculation based on credible data from the paired analyses for δ13Ccarb and δ13Corg of 11 black shale samples shows a high CO2 concentration in the Early Cambrian atmosphere, about 20 times higher than pre-industrial revolution values, consis-tent with previous global predictions. The small sulfur isotope fractionation between seawater sulfate and sedimen-tary sulfide in black shales, only 15.5‰ on average, implies a low sulfate level in the Early Cambrian seawater around 1 mmol. In combination with a high degree of pyritization (DOP) in the black shales, it is suggested that sul-fidic deep-ocean water could have lingered up to the earliest Cambrian in this area. The black shale deposition is envisaged in a stratified marine basin, with a surface euphotic and oxygenated water layer and sulfidic deeper water, controlled by a continental margin rift.
基金supported by the Fundamental Research Funds for the Central Universities(No.B200202009).
文摘The Early Cambrian represents a critical time period characterized by extraordinary biological innovations and dynamic redox conditions in seawaters.Nitrogen isotopic signatures of ancient sediments have the potential to elucidate the evolutionary path of marine redox states and the biogeochemical nitrogen cycle within the water column of the Early Cambrian ocean.While existing research on this topic has predominantly focused on South China,the exploration of other continental margins has been limited,leaving contradictory hypotheses untested.In this study,pairedδ^(15)N andδ^(13)C org analyses were performed on the Lower Cambrian successions from the Shiairike section(inner ramp)and Well Tadong 2(deep shelf/basin)in the northwestern and eastern Tarim Basin,respectively.Our data from the Shiairike section reveal a discernible shift in the operation of different nitrogen cycles for the black chert-shale unit,also referred to as the black rock series in Chinese literature,of the Yurtus Formation(Fortunian stage to lower Stage 3).Oscillatingδ^(15)N values for its lower part are suggestive of alternating anaerobic assimilation of NH 4+and denitrification/anammox.This is likely attributed to a shallow,unstable chemocline consistent with the upwelling and incursion of deep,anoxic waters during a major transgression.In contrast,aerobic nitrogen cycling,indicated by positiveδ^(15)N values of>2‰,dominated the upper part alongside a reduction in upwelling intensity.On the other hand,theδ^(15)N signatures of Xishanbulake and Xidashan Formations of Well Tadong 2,which encompass a time interval from the Cambrian Fortunian Age to Age 4,are indicative of N_(2)fixation by diazotrophs as the major nitrogen source.The two studied intervals,although not time-equivalent,exhibit separated states of nitrogen cycling at least during the deposition of the Yurtus black rock series.The spatially different nitrogen cycling of the studied sections is compatible with a redox-stratified ocean during the deposition of the Yurtus black rock series.The build-up of a NO_(3)−reservoir and aerobic nitrogen cycling in seawater was largely restricted to near-shore settings whereas anaerobic nitrogen cycling dominated by N_(2)fixation served as the main nitrogen uptake pathway in off-shore settings.
基金A financial support for this research was provided by the Natural Science Foundation of China under Grant No.4027201 1the Natural Science Foundation of Guangdong Province under Grant No.001203.
文摘Analyses of organic carbon, nitrogen, sulfur and iron have been performed in order to understand sources and preservation of organic matter in black shale of the Buxin Formation (Early Paleogene) from the Sanshui Basin. The C/N ratios show that the organic matter is characterized by a mixture of terrestrial and phytoplanktonic contributions. The relative importance of different sources depend on climate conditions and most of organic matter is of terrestrial origin. The relationships between C, S and Fe indicate that the brackish environment with alternation of anoxia and low-O2 developed in the bottom waters during the deposition of these organic-rich sediments as a result of a mixed setting of thermal stratification and salinity stratification, the latter being the consequence of intermittent sea water incursion. Bacterial sulfate reduction is the most effective early diagenesis affecting the preservation of organic matter. The intensity of sulfate reduction is related to the relative proportion of metabolizable organic matter supplied to sediments.
基金Project supported by the National Natural Science Foundation of China (Grant No. 49472114)the Open Laboratory of Or ganic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.
文摘Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carhon group of isotopes with the δ13C values from - 27% to - 35 %, which are lower than those of the contempomneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristies of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks.
基金supported by the National Natural Science Foundation of China (No. 41302023)the Doctoral Program of Higher Education (Specialized Research Fund) of China (No. 20125121130001)+1 种基金the Science Foundation of Education Department of Sichuan Province (No. 13ZB0190)the Karst Dynamics Laboratory, MLR and GZAR (No. KDL2011-04)
文摘The extensive transgression that occurred on the Yangtze Plate in Early Cambrian led to a massive organic carbon pool in the Niutitang Formation. A black shale core section from 3 251.08 to 3 436.08 m beneath the Earth's surface was studied to estimate the contribution of oxygenic photosynthesis to organic carbon sink fluxes in Early Cambrian Upper Yangtze shallow sea. Results indicate that the oxygenic photosynthesis played the most important role in carbon fixation in Early Cambrian. Organic carbon sink was mainly contributed by photosynthetic microorganisms, e.g., cyanobacteria, algae and archaea. The Niutitang Formation was formed in a deep anoxic marine shelf sedimentary environment at a sedimentation rate of ~0.09±0.03 mm/yr. The initial TOC abundance in Niutitang shale ranged from 0.18% to 7.09%, with an average of 2.15%. In accordance with the sedimentation rate and initial TOC abundance, organic carbon sink fluxes were calculated and found to range from 0.21 to 8.10×10~3 kg/km^2·yr^(-1), especially the organic carbon sink fluxes in depth between 3 385 and 3 470 m range from 3.80 to 8.10×10~3 kg/km^2·yr^(-1), with an average of ~6.03×10~3 kg/km^2·yr^(-1), which is much higher than that of contemporary marine sediments. The organic carbon sink fluxes of Niutitang shale are equal to 0.56 to 21.61×10~3 kg/km^2·yr^(-1) net oxygen emitted into the Early Cambrian ocean and atmosphere, this emitted oxygen may have significantly promoted the oxygen level of the Earth's surface and diversification of metazoans.
基金This project was financially supported by the National Natural Science Foundation of China (Grant No. 49502032). This paper has benefited from anonymous reviewers.
文摘There are different sulfur forms in the black shales from theEarly Cambrian of the Yangtze platform. With its emphasis on pyrite and organosulfur, this paper discusses their distribution and formation. The research shows that sulfur phases take regular variations laterally as well as vertically in the research areas. In western researched profile with high terrigenous supply at the time it formed, there exists a larger amount of pyrite and less organosulfur, and pyrite amount declines while organosulfur content increases upwards along the profile. This black shale profile is characterized by relatively light sulfur isotope composition with evolution trend of becoming heavier both for pyrite and organosulfur from bottom to top along the profile. Opposite situation occurs in eastern profiles which were located farther away from terrigenous land. Here pyrite amount obviously decreases and organic matter has combined more sulfur, although these two kinds of sulfur species take similar trend in content variation along profiles to that for western profile. At the same time more 34S is accumulated in sulfur species of black shale samples from eastern profile, and sulfur isotope composition gradually turns lighter from bottom to top. In combination with other information of iron, organic carbon contents and petrographic features, it can be established that sea-level change, supply of terrigenous matters, tectonic background and natures of paleoceanic chemistry have exerted great influence on the distribution of sulfur species in these black shales.
基金supported by the National Natural Science Foundation Research (Grant 41672130, 41728004)the National Key S&T Special Projects (Grant 2016ZX05061-003-001)+1 种基金the National Postdoctoral Innovative Talent Support Program (Grant BX201700289)China Postdoctoral Science Foundation (Grant 2017M620296)
文摘Control of various factors, including mineral components, primary productivity and redox level, on the total organic carbon(TOC) in the lower Cambrian black shale from southeastern margin of Upper Yangtze(Taozichong, Longbizui and Yanbei areas) is discussed in detail in this article. Mineral components in the study strata are dominated by quartz and clay minerals. Quartz in the Niutitang Formation is mainly of biogenic origin, and the content is in positive correlation with TOC, while the content of clay minerals is negatively correlated with TOC. Primary productivity, represented by the content of Mobio(biogenic molybdenum), Babio(biogenic barium) and phosphorus, is positively correlated with TOC. The main alkanes in studied samples are nCC, and odd–even priority values are closed to 1(0.73–1.13), which suggest the organic matter source was marine plankton. Element content ratios of U/Th and Ni/Co and compound ratio Pr/Ph indicate dysoxic–anoxic bottom water, with weak positive relative with TOC. In total, three main points can be drawn to explain the relationship between data and the factors affecting organic accumulation:(1) quartz-rich and clay-mineral-poor deep shelf–slope–basin environment was favorable for living organisms;(2) high productivity provided the material foundation for organic generation;(3) the redox conditions impact slightly on the content of organic matter under high productivity and dysoxic–anoxic condition.
文摘Systematic analyses of noble metal elements in the Lower Cambrian black rock series of South China are reported. Correlations of w (Os)/ w (Ir), w (Au)/ w (Ir), w (Ag)/ w (Au), w (Pt+Pd)/ w (Os+Ru+Rh+Ir), relations of noble metal and platinum group element (PGE) distribution patterns reveal that the noble metals are not directly from extraterrestrial materials. Studying the data of 9 aspects, the authors conclude that the noble metals were mainly from ultramafic mafic igneous rocks and their enrichment in black rocks is mainly controlled by hydrothermal fluid.
基金supported jointly by the National Natural Science Foundation of China(Grant No.40773035)special Research Fund of State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry of Chinese Academa of Sciences
文摘Adsorption experiments were made at room temperature and neutral pH value on different types of min-erals associated with the Lower Cambrian black shale series polymetallic layers in Hunan and Guizhou provinces on nanometer-sized Pt colloids and PtCl42--bearing ionic solutions with an attempt to constrain the relationship between the different types of minerals in the polymetallic layers and the enrichment of platinum group elements (PGEs). Experimental results showed that the different types of minerals show strong selectivity to the adsorption of nano-meter-sized Pt colloids and PtCl42--bearing ionic solutions. Metallic sulfides, organic matter and clay minerals are the strong adsorbents of PGEs, while quartz, albite, muscovite and other silicate minerals show a week adsorbility to both of them. This phenomenon is well consistent with the geological fact that metallic sulfides, organic matter and clay minerals in the polymetallic layers of the black shale series are the major carrier minerals of PGEs, giving a thorough explanation to the mechanism of enrichment of previous metal elements. Adsorption may be a principal mechanism of enrichment of precious metal elements under lower temperature conditions. The presence of the aforementioned strong adsorbents is the good geochemical barriers for the enrichment of PGEs.
基金funded by the China Geological Survey Basic Public Welfare Comprehensive Geological Survey Project(DD20191012,ZD20220504)the Chinese National Natural Science Foundation(42102065)。
文摘Early Paleozoic black organic sediments and bentonites occur widely in the craton basin within the Yangtze block and are generally believed to be genetically related to a specific tectonic setting on the cratonic boundary.However,the intimate relationship between their origins and the dynamic mechanisms are unclear,as exemplified by the genesis of the black shale series and bentonites from the Wufeng Formation during the Ordovician–Silurian transition(OST).In order to reveal the relationship between the Wufeng Formation and the convergence of the Yangtze and Cathaysia blocks(i.e.,the intracontinental Kwangsian Orogeny),two stratigraphic sections respectively in Zhaotong area(Northeast Yunnan)and Puyi area(Northwestern Guizhou)that were located in the semi-restricted inner Yangtze Sea during the OST were systematically studied,on the basis of whole-rock geochemical composition,pyriteδ^(34)S(δ^(34)Spy),total organic carbon(TOC),stable Sr isotope,pyrite framboid size distribution and zircon U-Pb age,trace elements.The evidence shows that the paleo-oceanic environment changed significantly at the turn of the early–late Katian and formed the black shale series in the Wufeng Formation.These acritarch assemblages were formed in the transition process of the Upper Yangtze Basin from passive continental margin basin to foreland basin during this interval.Based on previous research on the genetic relationship between black shale series and plate tectonic movement,a basin-mountain evolution model suitable for South China in the Late Ordovician is presented.The two bentonites in the Wufeng Formation with U-Pb ages of 445.5±0.8 Ma and 441.9±2.4 Ma primarily originated from the intermediate–acid volcanic eruption during the collision and convergence between the Yangtze and Cathaysia blocks in the Late Ordovician,the provenance region probably being located in the Jiangnan orogenic belt.Thus,we believe that the appearance of the black shale series and bentonite in the Wufeng Formation at the turn of the early–late Katian may represent the initiation of basin-mountain transformation and the Kwangsian Orogeny in South China,which provides important evidence for the collision and convergence of the Yangtze and Cathaysia blocks in the Late Ordovician.
文摘扬子地台寒武系下统存在富含V、Ni、Mo和铂族元素(platinum group element, PGE)等的黑色页岩,局部地区有U或者Ba、Hg、As等的富集,研究这些元素富集机理有利于寻找相关矿产或者探究地质事件。6 500万年前的小行星撞击地球产生了高PGE含量的地层或者化石,依据这一事实和陨石的特征及其他地质地球化学证据,推断下寒武统黑色页岩中Ni-Mo-PGE富集是陨石撞击结果,PGE中的Ir、Os富集最明显是因为二者最抗淋滤。U在康滇地轴东侧黑色页岩中最高可达480×10^(-6),因康滇地轴本身就存在混合型铀矿,推测黑色页岩中U来自它的风化。据V和Ba-Hg-As等的地化特性,认为V富集是受生物活动影响,但因V易于在热泉水中富集,故寒武纪早期泛非运动的构造-热事件可导致V富集成矿,Ba、Hg、As也因该事件产生构造裂隙后,它们优先随热液沿裂隙上升富集,并在海底局部成矿。此外,5.65亿年前的埃迪卡拉动物群发生地基本上就是5.8亿年前小行星撞击地点,提出此次行星撞击可能与埃迪卡拉生物群出现存在因果关系。由于在中国存在寒武纪澄江生物群大爆发事件,推测该次生物大爆发之前存在的下寒武统黑色页岩也存在陨石撞击痕迹。寒武系下统的含岩屑细砂岩夹黑色页岩甚至砾岩,反映了黑色页岩沉积时存在的突变沉积环境,加上其他地球化学特征也支持小行星撞击说。